File size: 14,822 Bytes
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abc49f
 
 
 
e5c3d38
 
 
 
 
 
 
 
 
8abc49f
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
3774d93
5704551
 
 
5f69a3a
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c3d38
 
 
 
 
 
 
 
 
 
 
 
5704551
 
 
 
 
 
 
 
 
e5c3d38
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dfa73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb89ebf
3c14aef
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
77dfa73
 
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7df95d
5704551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import io
import base64
import os

import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *

try:
    cuda_available = torch.cuda.is_available()
except:
    cuda_available = False
finally:
    if cuda_available:
        device = "cuda"
    else:
        device = "cpu"

if device != "cuda":
    import contextlib
    autocast = contextlib.nullcontext

def load_html():
    body, canvaspy = "", ""
    with open("index.html", encoding="utf8") as f:
        body = f.read()
    with open("canvas.py", encoding="utf8") as f:
        canvaspy = f.read()
    body = body.replace("- paths:\n", "")
    body = body.replace("  - ./canvas.py\n", "")
    body = body.replace("from canvas import InfCanvas", canvaspy)
    return body


def test(x):
    x = load_html()
    return f"""<iframe id="sdinfframe" style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera; 

    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 

    allow-scripts allow-same-origin allow-popups 

    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 

    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


DEBUG_MODE = False

try:
    SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
    SAMPLING_MODE = Image.LANCZOS

try:
    contain_func = ImageOps.contain
except Exception as e:

    def contain_func(image, size, method=SAMPLING_MODE):
        # from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain
        im_ratio = image.width / image.height
        dest_ratio = size[0] / size[1]
        if im_ratio != dest_ratio:
            if im_ratio > dest_ratio:
                new_height = int(image.height / image.width * size[0])
                if new_height != size[1]:
                    size = (size[0], new_height)
            else:
                new_width = int(image.width / image.height * size[1])
                if new_width != size[0]:
                    size = (new_width, size[1])
        return image.resize(size, resample=method)


PAINT_SELECTION = "✥"
IMAGE_SELECTION = "🖼️"
BRUSH_SELECTION = "🖌️"
blocks = gr.Blocks()
model = {}
model["width"] = 1500
model["height"] = 600
model["sel_size"] = 256

def get_token():
    token = ""
    token = os.environ.get("hftoken", token)
    return token


def save_token(token):
    return


def get_model(token=""):
    if "text2img" not in model:
        if device=="cuda":
            text2img = StableDiffusionPipeline.from_pretrained(
                "CompVis/stable-diffusion-v1-4",
                revision="fp16",
                torch_dtype=torch.float16,
                use_auth_token=token,
            ).to(device)
        else:
            text2img = StableDiffusionPipeline.from_pretrained(
                "CompVis/stable-diffusion-v1-4",
                use_auth_token=token,
            ).to(device)
        model["safety_checker"] = text2img.safety_checker
        inpaint = StableDiffusionInpaintPipeline(
            vae=text2img.vae,
            text_encoder=text2img.text_encoder,
            tokenizer=text2img.tokenizer,
            unet=text2img.unet,
            scheduler=text2img.scheduler,
            safety_checker=text2img.safety_checker,
            feature_extractor=text2img.feature_extractor,
        ).to(device)
        save_token(token)
        try:
            total_memory = torch.cuda.get_device_properties(0).total_memory // (
                1024 ** 3
            )
            if total_memory <= 5:
                inpaint.enable_attention_slicing()
        except:
            pass
        model["text2img"] = text2img
        model["inpaint"] = inpaint
    return model["text2img"], model["inpaint"]


def run_outpaint(

    sel_buffer_str,

    prompt_text,

    strength,

    guidance,

    step,

    resize_check,

    fill_mode,

    enable_safety,

    state,

):
    base64_str = "base64"
    if not cuda_available:
        data = base64.b64decode(str(sel_buffer_str))
        pil = Image.open(io.BytesIO(data))
        sel_buffer = np.array(pil)
        sel_buffer[:, :, 3]=255
        sel_buffer[:, :, 0]=255
        out_pil = Image.fromarray(sel_buffer)
        out_buffer = io.BytesIO()
        out_pil.save(out_buffer, format="PNG")
        out_buffer.seek(0)
        base64_bytes = base64.b64encode(out_buffer.read())
        base64_str = base64_bytes.decode("ascii")
        return (
            gr.update(label=str(state + 1), value=base64_str,),
            gr.update(label="Prompt"),
            state + 1,
        )
    if True:
        text2img, inpaint = get_model()
        if enable_safety:
            text2img.safety_checker = model["safety_checker"]
            inpaint.safety_checker = model["safety_checker"]
        else:
            text2img.safety_checker = lambda images, **kwargs: (images, False)
            inpaint.safety_checker = lambda images, **kwargs: (images, False)
        data = base64.b64decode(str(sel_buffer_str))
        pil = Image.open(io.BytesIO(data))
        # base.output.clear_output()
        # base.read_selection_from_buffer()
        sel_buffer = np.array(pil)
        img = sel_buffer[:, :, 0:3]
        mask = sel_buffer[:, :, -1]
        process_size = 512 if resize_check else model["sel_size"]
        if mask.sum() > 0:
            img, mask = functbl[fill_mode](img, mask)
            init_image = Image.fromarray(img)
            mask = 255 - mask
            mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
            mask = mask.repeat(8, axis=0).repeat(8, axis=1)
            mask_image = Image.fromarray(mask)
            # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
            with autocast("cuda"):
                images = inpaint(
                    prompt=prompt_text,
                    init_image=init_image.resize(
                        (process_size, process_size), resample=SAMPLING_MODE
                    ),
                    mask_image=mask_image.resize((process_size, process_size)),
                    strength=strength,
                    num_inference_steps=step,
                    guidance_scale=guidance,
                )["sample"]
        else:
            with autocast("cuda"):
                images = text2img(
                    prompt=prompt_text, height=process_size, width=process_size,
                )["sample"]
        out = sel_buffer.copy()
        out[:, :, 0:3] = np.array(
            images[0].resize(
                (model["sel_size"], model["sel_size"]), resample=SAMPLING_MODE,
            )
        )
        out[:, :, -1] = 255
        out_pil = Image.fromarray(out)
        out_buffer = io.BytesIO()
        out_pil.save(out_buffer, format="PNG")
        out_buffer.seek(0)
        base64_bytes = base64.b64encode(out_buffer.read())
        base64_str = base64_bytes.decode("ascii")
    return (
        gr.update(label=str(state + 1), value=base64_str,),
        gr.update(label="Prompt"),
        state + 1,
    )


def load_js(name):
    if name in ["export", "commit", "undo"]:
        return f"""

function (x)

{{ 

    let frame=document.querySelector("gradio-app").querySelector("#sdinfframe").contentWindow;

    frame.postMessage(["click","{name}"], "*");

    return x;

}}

"""
    ret = ""
    with open(f"./js/{name}.js", "r") as f:
        ret = f.read()
    return ret


upload_button_js = load_js("upload")
outpaint_button_js = load_js("outpaint")
proceed_button_js = load_js("proceed")
mode_js = load_js("mode")
setup_button_js = load_js("setup")
if not cuda_available:
    get_model = lambda x:x
get_model(get_token())

with blocks as demo:
    # title
    title = gr.Markdown(
        """

    **stablediffusion-infinity**: Outpainting with Stable Diffusion on an infinite canvas: [https://github.com/lkwq007/stablediffusion-infinity](https://github.com/lkwq007/stablediffusion-infinity)

    """
    )
    # frame
    frame = gr.HTML(test(2), visible=True)
    # setup
    # with gr.Row():
    #     token = gr.Textbox(
    #         label="Huggingface token",
    #         value="",
    #         placeholder="Input your token here",
    #     )
    #     canvas_width = gr.Number(
    #         label="Canvas width", value=1024, precision=0, elem_id="canvas_width"
    #     )
    #     canvas_height = gr.Number(
    #         label="Canvas height", value=600, precision=0, elem_id="canvas_height"
    #     )
    #     selection_size = gr.Number(
    #         label="Selection box size", value=256, precision=0, elem_id="selection_size"
    #     )
    # setup_button = gr.Button("Start (may take a while)", variant="primary")
    with gr.Row():
        with gr.Column(scale=3, min_width=270):
            # canvas control
            canvas_control = gr.Radio(
                label="Control",
                choices=[PAINT_SELECTION, IMAGE_SELECTION, BRUSH_SELECTION],
                value=PAINT_SELECTION,
                elem_id="control",
            )
            with gr.Box():
                with gr.Group():
                    run_button = gr.Button(value="Outpaint")
                    export_button = gr.Button(value="Export")
                    commit_button = gr.Button(value="✓")
                    retry_button = gr.Button(value="⟳")
                    undo_button = gr.Button(value="↶")
        with gr.Column(scale=3, min_width=270):
            sd_prompt = gr.Textbox(
                label="Prompt", placeholder="input your prompt here", lines=4
            )
        with gr.Column(scale=2, min_width=150):
            with gr.Box():
                sd_resize = gr.Checkbox(label="Resize input to 515x512", value=True)
                safety_check = gr.Checkbox(label="Enable Safety Checker", value=True)
            sd_strength = gr.Slider(
                label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
            )
        with gr.Column(scale=1, min_width=150):
            sd_step = gr.Number(label="Step", value=50, precision=0)
            sd_guidance = gr.Number(label="Guidance", value=7.5)
    with gr.Row():
        with gr.Column(scale=4, min_width=600):
            init_mode = gr.Radio(
                label="Init mode",
                choices=[
                    "patchmatch",
                    "edge_pad",
                    "cv2_ns",
                    "cv2_telea",
                    "gaussian",
                    "perlin",
                ],
                value="patchmatch",
                type="value",
            )

    proceed_button = gr.Button("Proceed", elem_id="proceed", visible=DEBUG_MODE)
    # sd pipeline parameters
    with gr.Accordion("Upload image", open=False):
        image_box = gr.Image(image_mode="RGBA", source="upload", type="pil")
        upload_button = gr.Button(
            "Upload"
        )
    model_output = gr.Textbox(visible=DEBUG_MODE, elem_id="output", label="0")
    model_input = gr.Textbox(visible=DEBUG_MODE, elem_id="input", label="Input")
    upload_output = gr.Textbox(visible=DEBUG_MODE, elem_id="upload", label="0")
    model_output_state = gr.State(value=0)
    upload_output_state = gr.State(value=0)
    # canvas_state = gr.State({"width":1024,"height":600,"selection_size":384})

    def upload_func(image, state):
        pil = image.convert("RGBA")
        w, h = pil.size
        if w > model["width"] - 100 or h > model["height"] - 100:
            pil = contain_func(pil, (model["width"] - 100, model["height"] - 100))
        out_buffer = io.BytesIO()
        pil.save(out_buffer, format="PNG")
        out_buffer.seek(0)
        base64_bytes = base64.b64encode(out_buffer.read())
        base64_str = base64_bytes.decode("ascii")
        return (
            gr.update(label=str(state + 1), value=base64_str),
            state + 1,
        )

    upload_button.click(
        fn=upload_func,
        inputs=[image_box, upload_output_state],
        outputs=[upload_output, upload_output_state],
        _js=upload_button_js,
        queue=False
    )

    def setup_func(token_val, width, height, size):
        model["width"] = width
        model["height"] = height
        model["sel_size"] = size
        try:
            get_model(token_val)
        except Exception as e:
            return {token: gr.update(value="Invalid token!")}
        return {
            token: gr.update(visible=False),
            canvas_width: gr.update(visible=False),
            canvas_height: gr.update(visible=False),
            selection_size: gr.update(visible=False),
            setup_button: gr.update(visible=False),
            frame: gr.update(visible=True),
            upload_button: gr.update(value="Upload"),
        }

    # setup_button.click(
    #     fn=setup_func,
    #     inputs=[token, canvas_width, canvas_height, selection_size],
    #     outputs=[
    #         token,
    #         canvas_width,
    #         canvas_height,
    #         selection_size,
    #         setup_button,
    #         frame,
    #         upload_button,
    #     ],
    #     _js=setup_button_js,
    # )
    run_button.click(
        fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js,
    )
    retry_button.click(
        fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js,
    )
    proceed_button.click(
        fn=run_outpaint,
        inputs=[
            model_input,
            sd_prompt,
            sd_strength,
            sd_guidance,
            sd_step,
            sd_resize,
            init_mode,
            safety_check,
            model_output_state,
        ],
        outputs=[model_output, sd_prompt, model_output_state],
        _js=proceed_button_js,
    )
    export_button.click(
        fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("export")
    )
    commit_button.click(
        fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("commit")
    )
    undo_button.click(
        fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("undo")
    )
    canvas_control.change(
        fn=None, inputs=[canvas_control], outputs=[canvas_control], _js=mode_js,
    )

demo.launch()