Spaces:
Runtime error
Runtime error
import io | |
import base64 | |
import os | |
import numpy as np | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline | |
from PIL import Image | |
from PIL import ImageOps | |
import gradio as gr | |
import base64 | |
import skimage | |
import skimage.measure | |
from utils import * | |
def load_html(): | |
body, canvaspy = "", "" | |
with open("index.html", encoding="utf8") as f: | |
body = f.read() | |
with open("canvas.py", encoding="utf8") as f: | |
canvaspy = f.read() | |
body = body.replace("- paths:\n", "") | |
body = body.replace(" - ./canvas.py\n", "") | |
body = body.replace("from canvas import InfCanvas", canvaspy) | |
return body | |
def test(x): | |
x = load_html() | |
return f"""<iframe id="sdinfframe" style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera; | |
display-capture; encrypted-media;" sandbox="allow-modals allow-forms | |
allow-scripts allow-same-origin allow-popups | |
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" | |
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""" | |
DEBUG_MODE = False | |
try: | |
SAMPLING_MODE = Image.Resampling.LANCZOS | |
except Exception as e: | |
SAMPLING_MODE = Image.LANCZOS | |
try: | |
contain_func = ImageOps.contain | |
except Exception as e: | |
def contain_func(image, size, method=SAMPLING_MODE): | |
# from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain | |
im_ratio = image.width / image.height | |
dest_ratio = size[0] / size[1] | |
if im_ratio != dest_ratio: | |
if im_ratio > dest_ratio: | |
new_height = int(image.height / image.width * size[0]) | |
if new_height != size[1]: | |
size = (size[0], new_height) | |
else: | |
new_width = int(image.width / image.height * size[1]) | |
if new_width != size[0]: | |
size = (new_width, size[1]) | |
return image.resize(size, resample=method) | |
PAINT_SELECTION = "✥" | |
IMAGE_SELECTION = "🖼️" | |
BRUSH_SELECTION = "🖌️" | |
blocks = gr.Blocks() | |
model = {} | |
model["width"] = 1500 | |
model["height"] = 600 | |
model["sel_size"] = 256 | |
def get_token(): | |
token = "" | |
token = os.environ.get("hftoken", token) | |
return token | |
def save_token(token): | |
return | |
def get_model(token=""): | |
if "text2img" not in model: | |
text2img = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
revision="fp16", | |
torch_dtype=torch.float16, | |
use_auth_token=token, | |
).to("cuda") | |
model["safety_checker"] = text2img.safety_checker | |
inpaint = StableDiffusionInpaintPipeline( | |
vae=text2img.vae, | |
text_encoder=text2img.text_encoder, | |
tokenizer=text2img.tokenizer, | |
unet=text2img.unet, | |
scheduler=text2img.scheduler, | |
safety_checker=text2img.safety_checker, | |
feature_extractor=text2img.feature_extractor, | |
).to("cuda") | |
save_token(token) | |
try: | |
total_memory = torch.cuda.get_device_properties(0).total_memory // ( | |
1024 ** 3 | |
) | |
if total_memory <= 5: | |
inpaint.enable_attention_slicing() | |
except: | |
pass | |
model["text2img"] = text2img | |
model["inpaint"] = inpaint | |
return model["text2img"], model["inpaint"] | |
def run_outpaint( | |
sel_buffer_str, | |
prompt_text, | |
strength, | |
guidance, | |
step, | |
resize_check, | |
fill_mode, | |
enable_safety, | |
state, | |
): | |
base64_str = "base64" | |
data = base64.b64decode(str(sel_buffer_str)) | |
pil = Image.open(io.BytesIO(data)) | |
sel_buffer = np.array(pil) | |
sel_buffer[:, :, 3]=255 | |
sel_buffer[:, :, 0]=255 | |
out_pil = Image.fromarray(sel_buffer) | |
out_buffer = io.BytesIO() | |
out_pil.save(out_buffer, format="PNG") | |
out_buffer.seek(0) | |
base64_bytes = base64.b64encode(out_buffer.read()) | |
base64_str = base64_bytes.decode("ascii") | |
return ( | |
gr.update(label=str(state + 1), value=base64_str,), | |
gr.update(label="Prompt"), | |
state + 1, | |
) | |
if True: | |
text2img, inpaint = get_model() | |
if enable_safety: | |
text2img.safety_checker = model["safety_checker"] | |
inpaint.safety_checker = model["safety_checker"] | |
else: | |
text2img.safety_checker = lambda images, **kwargs: (images, False) | |
inpaint.safety_checker = lambda images, **kwargs: (images, False) | |
data = base64.b64decode(str(sel_buffer_str)) | |
pil = Image.open(io.BytesIO(data)) | |
# base.output.clear_output() | |
# base.read_selection_from_buffer() | |
sel_buffer = np.array(pil) | |
img = sel_buffer[:, :, 0:3] | |
mask = sel_buffer[:, :, -1] | |
process_size = 512 if resize_check else model["sel_size"] | |
if mask.sum() > 0: | |
img, mask = functbl[fill_mode](img, mask) | |
init_image = Image.fromarray(img) | |
mask = 255 - mask | |
mask = skimage.measure.block_reduce(mask, (8, 8), np.max) | |
mask = mask.repeat(8, axis=0).repeat(8, axis=1) | |
mask_image = Image.fromarray(mask) | |
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8)) | |
with autocast("cuda"): | |
images = inpaint( | |
prompt=prompt_text, | |
init_image=init_image.resize( | |
(process_size, process_size), resample=SAMPLING_MODE | |
), | |
mask_image=mask_image.resize((process_size, process_size)), | |
strength=strength, | |
num_inference_steps=step, | |
guidance_scale=guidance, | |
)["sample"] | |
else: | |
with autocast("cuda"): | |
images = text2img( | |
prompt=prompt_text, height=process_size, width=process_size, | |
)["sample"] | |
out = sel_buffer.copy() | |
out[:, :, 0:3] = np.array( | |
images[0].resize( | |
(model["sel_size"], model["sel_size"]), resample=SAMPLING_MODE, | |
) | |
) | |
out[:, :, -1] = 255 | |
out_pil = Image.fromarray(out) | |
out_buffer = io.BytesIO() | |
out_pil.save(out_buffer, format="PNG") | |
out_buffer.seek(0) | |
base64_bytes = base64.b64encode(out_buffer.read()) | |
base64_str = base64_bytes.decode("ascii") | |
return ( | |
gr.update(label=str(state + 1), value=base64_str,), | |
gr.update(label="Prompt"), | |
state + 1, | |
) | |
def load_js(name): | |
if name in ["export", "commit", "undo"]: | |
return f""" | |
function (x) | |
{{ | |
let frame=document.querySelector("gradio-app").shadowRoot.querySelector("#sdinfframe").contentWindow; | |
frame.postMessage(["click","{name}"], "*"); | |
return x; | |
}} | |
""" | |
ret = "" | |
with open(f"./js/{name}.js", "r") as f: | |
ret = f.read() | |
return ret | |
upload_button_js = load_js("upload") | |
outpaint_button_js = load_js("outpaint") | |
proceed_button_js = load_js("proceed") | |
mode_js = load_js("mode") | |
setup_button_js = load_js("setup") | |
def get_model(x): | |
pass | |
get_model(get_token()) | |
with blocks as demo: | |
# title | |
title = gr.Markdown( | |
""" | |
**stablediffusion-infinity**: Outpainting with Stable Diffusion on an infinite canvas: [https://github.com/lkwq007/stablediffusion-infinity](https://github.com/lkwq007/stablediffusion-infinity) | |
""" | |
) | |
# frame | |
frame = gr.HTML(test(2), visible=True) | |
# setup | |
# with gr.Row(): | |
# token = gr.Textbox( | |
# label="Huggingface token", | |
# value="", | |
# placeholder="Input your token here", | |
# ) | |
# canvas_width = gr.Number( | |
# label="Canvas width", value=1024, precision=0, elem_id="canvas_width" | |
# ) | |
# canvas_height = gr.Number( | |
# label="Canvas height", value=600, precision=0, elem_id="canvas_height" | |
# ) | |
# selection_size = gr.Number( | |
# label="Selection box size", value=256, precision=0, elem_id="selection_size" | |
# ) | |
# setup_button = gr.Button("Start (may take a while)", variant="primary") | |
with gr.Row(): | |
with gr.Column(scale=3, min_width=270): | |
# canvas control | |
canvas_control = gr.Radio( | |
label="Control", | |
choices=[PAINT_SELECTION, IMAGE_SELECTION, BRUSH_SELECTION], | |
value=PAINT_SELECTION, | |
elem_id="control", | |
) | |
with gr.Box(): | |
with gr.Group(): | |
run_button = gr.Button(value="Outpaint") | |
export_button = gr.Button(value="Export") | |
commit_button = gr.Button(value="✓") | |
retry_button = gr.Button(value="⟳") | |
undo_button = gr.Button(value="↶") | |
with gr.Column(scale=3, min_width=270): | |
sd_prompt = gr.Textbox( | |
label="Prompt", placeholder="input your prompt here", lines=4 | |
) | |
with gr.Column(scale=2, min_width=150): | |
with gr.Box(): | |
sd_resize = gr.Checkbox(label="Resize input to 515x512", value=True) | |
safety_check = gr.Checkbox(label="Enable Safety Checker", value=True) | |
sd_strength = gr.Slider( | |
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01 | |
) | |
with gr.Column(scale=1, min_width=150): | |
sd_step = gr.Number(label="Step", value=50, precision=0) | |
sd_guidance = gr.Number(label="Guidance", value=7.5) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=600): | |
init_mode = gr.Radio( | |
label="Init mode", | |
choices=[ | |
"patchmatch", | |
"edge_pad", | |
"cv2_ns", | |
"cv2_telea", | |
"gaussian", | |
"perlin", | |
], | |
value="patchmatch", | |
type="value", | |
) | |
proceed_button = gr.Button("Proceed", elem_id="proceed", visible=DEBUG_MODE) | |
# sd pipeline parameters | |
with gr.Accordion("Upload image", open=False): | |
image_box = gr.Image(image_mode="RGBA", source="upload", type="pil") | |
upload_button = gr.Button( | |
"Upload" | |
) | |
model_output = gr.Textbox(visible=DEBUG_MODE, elem_id="output", label="0") | |
model_input = gr.Textbox(visible=DEBUG_MODE, elem_id="input", label="Input") | |
upload_output = gr.Textbox(visible=DEBUG_MODE, elem_id="upload", label="0") | |
model_output_state = gr.State(value=0) | |
upload_output_state = gr.State(value=0) | |
# canvas_state = gr.State({"width":1024,"height":600,"selection_size":384}) | |
def upload_func(image, state): | |
pil = image.convert("RGBA") | |
w, h = pil.size | |
if w > model["width"] - 100 or h > model["height"] - 100: | |
pil = contain_func(pil, (model["width"] - 100, model["height"] - 100)) | |
out_buffer = io.BytesIO() | |
pil.save(out_buffer, format="PNG") | |
out_buffer.seek(0) | |
base64_bytes = base64.b64encode(out_buffer.read()) | |
base64_str = base64_bytes.decode("ascii") | |
return ( | |
gr.update(label=str(state + 1), value=base64_str), | |
state + 1, | |
) | |
upload_button.click( | |
fn=upload_func, | |
inputs=[image_box, upload_output_state], | |
outputs=[upload_output, upload_output_state], | |
_js=upload_button_js, | |
) | |
def setup_func(token_val, width, height, size): | |
model["width"] = width | |
model["height"] = height | |
model["sel_size"] = size | |
try: | |
get_model(token_val) | |
except Exception as e: | |
return {token: gr.update(value="Invalid token!")} | |
return { | |
token: gr.update(visible=False), | |
canvas_width: gr.update(visible=False), | |
canvas_height: gr.update(visible=False), | |
selection_size: gr.update(visible=False), | |
setup_button: gr.update(visible=False), | |
frame: gr.update(visible=True), | |
upload_button: gr.update(value="Upload"), | |
} | |
# setup_button.click( | |
# fn=setup_func, | |
# inputs=[token, canvas_width, canvas_height, selection_size], | |
# outputs=[ | |
# token, | |
# canvas_width, | |
# canvas_height, | |
# selection_size, | |
# setup_button, | |
# frame, | |
# upload_button, | |
# ], | |
# _js=setup_button_js, | |
# ) | |
run_button.click( | |
fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js, | |
) | |
retry_button.click( | |
fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js, | |
) | |
proceed_button.click( | |
fn=run_outpaint, | |
inputs=[ | |
model_input, | |
sd_prompt, | |
sd_strength, | |
sd_guidance, | |
sd_step, | |
sd_resize, | |
init_mode, | |
safety_check, | |
model_output_state, | |
], | |
outputs=[model_output, sd_prompt, model_output_state], | |
_js=proceed_button_js, | |
) | |
export_button.click( | |
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("export") | |
) | |
commit_button.click( | |
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("commit") | |
) | |
undo_button.click( | |
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("undo") | |
) | |
canvas_control.change( | |
fn=None, inputs=[canvas_control], outputs=[canvas_control], _js=mode_js, | |
) | |
demo.launch() | |