lnyan's picture
Update app
cefe0d3
raw
history blame
9.1 kB
from PIL import Image
from PIL import ImageFilter
import cv2
import numpy as np
import scipy
import scipy.signal
from scipy.spatial import cKDTree
import os
from perlin2d import *
patch_match_compiled = True
try:
from PyPatchMatch import patch_match
except Exception as e:
try:
import patch_match
except Exception as e:
patch_match_compiled = False
try:
patch_match
except NameError:
print("patch_match compiling failed, will fall back to edge_pad")
patch_match_compiled = False
def edge_pad(img, mask, mode=1):
if mode == 0:
nmask = mask.copy()
nmask[nmask > 0] = 1
res0 = 1 - nmask
res1 = nmask
p0 = np.stack(res0.nonzero(), axis=0).transpose()
p1 = np.stack(res1.nonzero(), axis=0).transpose()
min_dists, min_dist_idx = cKDTree(p1).query(p0, 1)
loc = p1[min_dist_idx]
for (a, b), (c, d) in zip(p0, loc):
img[a, b] = img[c, d]
elif mode == 1:
record = {}
kernel = [[1] * 3 for _ in range(3)]
nmask = mask.copy()
nmask[nmask > 0] = 1
res = scipy.signal.convolve2d(
nmask, kernel, mode="same", boundary="fill", fillvalue=1
)
res[nmask < 1] = 0
res[res == 9] = 0
res[res > 0] = 1
ylst, xlst = res.nonzero()
queue = [(y, x) for y, x in zip(ylst, xlst)]
# bfs here
cnt = res.astype(np.float32)
acc = img.astype(np.float32)
step = 1
h = acc.shape[0]
w = acc.shape[1]
offset = [(1, 0), (-1, 0), (0, 1), (0, -1)]
while queue:
target = []
for y, x in queue:
val = acc[y][x]
for yo, xo in offset:
yn = y + yo
xn = x + xo
if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1:
if record.get((yn, xn), step) == step:
acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val
cnt[yn][xn] += 1
acc[yn][xn] /= cnt[yn][xn]
if (yn, xn) not in record:
record[(yn, xn)] = step
target.append((yn, xn))
step += 1
queue = target
img = acc.astype(np.uint8)
else:
nmask = mask.copy()
ylst, xlst = nmask.nonzero()
yt, xt = ylst.min(), xlst.min()
yb, xb = ylst.max(), xlst.max()
content = img[yt : yb + 1, xt : xb + 1]
img = np.pad(
content,
((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)),
mode="edge",
)
return img, mask
def perlin_noise(img, mask):
lin = np.linspace(0, 5, mask.shape[0], endpoint=False)
x, y = np.meshgrid(lin, lin)
avg = img.mean(axis=0).mean(axis=0)
# noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)]
noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)]
noise = np.stack(noise, axis=-1)
# mask=skimage.measure.block_reduce(mask,(8,8),np.min)
# mask=mask.repeat(8, axis=0).repeat(8, axis=1)
# mask_image=Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4))
# mask=np.array(mask_image)
nmask = mask.copy()
# nmask=nmask/255.0
nmask[mask > 0] = 1
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
# img=img.astype(np.uint8)
return img, mask
def gaussian_noise(img, mask):
noise = np.random.randn(mask.shape[0], mask.shape[1], 3)
noise = (noise + 1) / 2 * 255
noise = noise.astype(np.uint8)
nmask = mask.copy()
nmask[mask > 0] = 1
img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
return img, mask
def cv2_telea(img, mask):
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA)
return ret, mask
def cv2_ns(img, mask):
ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS)
return ret, mask
def patch_match_func(img, mask):
ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3)
return ret, mask
def mean_fill(img, mask):
avg = img.mean(axis=0).mean(axis=0)
img[mask < 1] = avg
return img, mask
"""
Apache-2.0 license
https://github.com/hafriedlander/stable-diffusion-grpcserver/blob/main/sdgrpcserver/services/generate.py
https://github.com/parlance-zz/g-diffuser-bot/tree/g-diffuser-bot-beta2
_handleImageAdjustment
"""
try:
from sd_grpcserver.sdgrpcserver import images
import torch
from math import sqrt
def handleImageAdjustment(array, adjustments):
tensor = images.fromPIL(Image.fromarray(array))
for adjustment in adjustments:
which = adjustment[0]
if which == "blur":
sigma = adjustment[1]
direction = adjustment[2]
if direction == "DOWN" or direction == "UP":
orig = tensor
repeatCount=256
sigma /= sqrt(repeatCount)
for _ in range(repeatCount):
tensor = images.gaussianblur(tensor, sigma)
if direction == "DOWN":
tensor = torch.minimum(tensor, orig)
else:
tensor = torch.maximum(tensor, orig)
else:
tensor = images.gaussianblur(tensor, adjustment.blur.sigma)
elif which == "invert":
tensor = images.invert(tensor)
elif which == "levels":
tensor = images.levels(tensor, adjustment[1], adjustment[2], adjustment[3], adjustment[4])
elif which == "channels":
tensor = images.channelmap(tensor, [adjustment.channels.r, adjustment.channels.g, adjustment.channels.b, adjustment.channels.a])
elif which == "rescale":
self.unimp("Rescale")
elif which == "crop":
tensor = images.crop(tensor, adjustment.crop.top, adjustment.crop.left, adjustment.crop.height, adjustment.crop.width)
return np.array(images.toPIL(tensor)[0])
except:
pass
def g_diffuser(img,mask):
adjustments=[["blur",32,"UP"],["level",0,0.05,0,1]]
mask=handleImageAdjustment(mask,adjustments)
out_mask=handleImageAdjustment(mask,adjustments)
return img, mask, out_mask
def dummy_fill(img,mask):
return img,mask
functbl = {
"gaussian": gaussian_noise,
"perlin": perlin_noise,
"edge_pad": edge_pad,
"patchmatch": patch_match_func if patch_match_compiled else edge_pad,
"cv2_ns": cv2_ns,
"cv2_telea": cv2_telea,
"g_diffuser": g_diffuser,
"g_diffuser_lib": dummy_fill,
}
try:
from postprocess import PhotometricCorrection
correction_func = PhotometricCorrection()
except Exception as e:
print(e, "so PhotometricCorrection is disabled")
class DummyCorrection:
def __init__(self):
self.backend=""
pass
def run(self,a,b,**kwargs):
return b
correction_func=DummyCorrection()
if "taichi" in correction_func.backend:
import sys
import io
import base64
from PIL import Image
def base64_to_pil(base64_str):
data = base64.b64decode(str(base64_str))
pil = Image.open(io.BytesIO(data))
return pil
def pil_to_base64(out_pil):
out_buffer = io.BytesIO()
out_pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
return base64_str
from subprocess import Popen, PIPE, STDOUT
class SubprocessCorrection:
def __init__(self):
self.backend=correction_func.backend
self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
def run(self,img_input,img_inpainted,mode):
if mode=="disabled":
return img_inpainted
base64_str_input = pil_to_base64(img_input)
base64_str_inpainted = pil_to_base64(img_inpainted)
try:
if self.child.poll():
self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
self.child.stdin.write(f"{base64_str_input},{base64_str_inpainted},{mode}\n".encode())
self.child.stdin.flush()
out = self.child.stdout.readline()
base64_str=out.decode().strip()
while base64_str and base64_str[0]=="[":
print(base64_str)
out = self.child.stdout.readline()
base64_str=out.decode().strip()
ret=base64_to_pil(base64_str)
except:
print("[PIE] not working, photometric correction is disabled")
ret=img_inpainted
return ret
correction_func = SubprocessCorrection()