Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
import torch | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
transcriber = pipeline("automatic-speech-recognition", model="mahimairaja/whisper-base-tamil", \ | |
chunk_length_s=15, device=device) | |
transcriber.model.config.forced_decoder_ids = transcriber.tokenizer.get_decoder_prompt_ids(language="ta", task="transcribe") | |
def transcribe(audio): | |
return transcriber(audio)["text"] | |
TITLE = "ASR for ALL - Democratizing Tamil" | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs="text", | |
title=TITLE, | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources="upload", type="filepath"), | |
outputs="text", | |
examples=[ | |
"assets/tamil-audio-01.mp3", | |
"assets/tamil-audio-02.mp3", | |
"assets/tamil-audio-03.mp3", | |
"assets/tamil-audio-04.mp3", | |
], | |
title=TITLE, | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, file_transcribe], | |
["Real Time Transcription", "Audio File", ] | |
) | |
demo.launch() |