mahimairaja commited on
Commit
b3b9d29
1 Parent(s): 7c6d1bf

Added Italian to French Feature (#1)

Browse files

- Added Italian to French Feature (b08b273c06fcf98751168eea77a01fecffd2ed22)

Files changed (1) hide show
  1. app.py +26 -6
app.py CHANGED
@@ -3,7 +3,12 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
 
 
 
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,18 +17,34 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
 
 
24
  def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
 
29
  def synthesise(text):
@@ -43,7 +64,6 @@ title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -61,7 +81,7 @@ file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
@@ -69,4 +89,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+
7
+ from transformers import AutoTokenizer, TFMarianMTModel
8
+ from typing import List
9
+
10
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
11
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoProcessor
12
 
13
 
14
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
17
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
18
 
19
  # load text-to-speech checkpoint and speaker embeddings
20
+ processor = AutoProcessor.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french")
21
 
22
+ model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french").to(device)
23
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
24
 
25
+
26
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
27
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
28
 
29
 
30
+
31
+
32
  def translate(audio):
33
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
34
+ english = outputs["text"]
35
+
36
+ src = "en" # source language
37
+ trg = "fr" # target language
38
+ model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
39
+
40
+ model = TFMarianMTModel.from_pretrained(model_name)
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
42
+
43
+ batch = tokenizer([english], return_tensors="tf")
44
+ gen = model.generate(**batch)
45
+ return tokenizer.batch_decode(gen, skip_special_tokens=True)[0]
46
+
47
+
48
 
49
 
50
  def synthesise(text):
 
64
  description = """
65
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
66
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
67
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
68
  """
69
 
 
81
  fn=speech_to_speech_translation,
82
  inputs=gr.Audio(source="upload", type="filepath"),
83
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
84
+ # examples=[["./example.wav"]],
85
  title=title,
86
  description=description,
87
  )
 
89
  with demo:
90
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
91
 
92
+ demo.launch()