manuelcozar55's picture
Update app.py
012ce2e verified
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import PyPDF2
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from huggingface_hub import login
from pathlib import Path
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import os
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
if huggingface_token:
login(token=huggingface_token)
# Configuraci贸n del modelo de resumen
llm = HuggingFaceEndpoint(
repo_id="Equall/Saul-7B-Instruct-v1",
task="text-generation",
max_new_tokens=4096,
temperature=0.5,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
# Configuraci贸n del modelo de clasificaci贸n
tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}
def read_pdf(file_path):
pdf_reader = PyPDF2.PdfReader(file_path)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def summarize(file):
# Leer el contenido del archivo subido
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
template = '''
Please carefully read the following document:
<document>
{TEXT}
</document>
After reading through the document, identify the key points and main ideas covered in the text. Organize these key points into a concise bulleted list that summarizes the essential information from the document. The summary should have a maximum of 10 bullet points.
Your goal is to be comprehensive in capturing the core content of the document, while also being concise in how you express each summary point. Omit minor details and focus on the central themes and important facts.
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT']
)
formatted_prompt = prompt.format(TEXT=text)
output_summary = llm_engine_hf.invoke(formatted_prompt)
return output_summary.content
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
model.eval()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_label = id2label[predicted_class_id]
return predicted_label
def translate(file, target_language):
# Leer el contenido del archivo subido
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
template = '''
Please translate the following document to {LANGUAGE}:
<document>
{TEXT}
</document>
Ensure that the translation is accurate and preserves the original meaning of the document.
'''
prompt = PromptTemplate(
template=template,
input_variables=['TEXT', 'LANGUAGE']
)
formatted_prompt = prompt.format(TEXT=text, LANGUAGE=target_language)
translated_text = llm_engine_hf.invoke(formatted_prompt)
return translated_text
def process_file(file, action, target_language=None):
if action == "Resumen":
return summarize(file)
elif action == "Clasificar":
file_path = file.name
if file_path.endswith('.pdf'):
text = read_pdf(file_path)
else:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
return classify_text(text)
elif action == "Traducir":
return translate(file, target_language)
else:
return "Acci贸n no v谩lida"
def download_text(output_text, filename='output.txt'):
if output_text:
file_path = Path(filename)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(output_text)
return file_path
else:
return None
def create_download_file(output_text, filename='output.txt'):
file_path = download_text(output_text, filename)
return str(file_path) if file_path else None
# Crear la interfaz de Gradio
with gr.Blocks() as demo:
gr.Markdown("## Document Processor")
with gr.Row():
with gr.Column():
file = gr.File(label="Subir un archivo")
action = gr.Radio(label="Seleccione una acci贸n", choices=["Resumen", "Clasificar", "Traducir"])
target_language = gr.Dropdown(label="Seleccionar idioma de traducci贸n", choices=["en", "fr", "de"], visible=False)
with gr.Column():
output_text = gr.Textbox(label="Resultado", lines=20)
def update_language_dropdown(action):
if action == "Traducir":
return gr.update(visible=True)
else:
return gr.update(visible=False)
action.change(update_language_dropdown, inputs=action, outputs=target_language)
submit_button = gr.Button("Procesar")
submit_button.click(process_file, inputs=[file, action, target_language], outputs=output_text)
def generate_file():
summary_text = output_text.value
filename = 'translation.txt' if action.value == 'Traducir' else 'summary.txt'
file_path = download_text(summary_text, filename)
return file_path
download_button = gr.Button("Descargar Resultado")
download_button.click(
fn=generate_file,
inputs=[output_text],
outputs=gr.File()
)
# Ejecutar la aplicaci贸n Gradio
demo.launch(share=True)