mattb512 commited on
Commit
b403896
1 Parent(s): 8a73c52

logits to cpu

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -15,7 +15,7 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
  print(f"Is CUDA available: {torch.cuda.is_available()} --> {device=}")
16
  if (torch.cuda.is_available()):
17
  print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
18
-
19
  model.to(device)
20
 
21
  # https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
@@ -69,22 +69,24 @@ def call(image): #nparray
69
  # resized_image = Image.fromarray(resized_image_np)
70
  # print(f"{resized_image=}")
71
 
72
- inputs = feature_extractor(images=resized_image, return_tensors="pt")
73
-
74
  print(f"**processing time: {(time.time() - start):.2f} s")
75
 
76
  outputs = model(**inputs)
77
- print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
 
 
78
  # print(f"{logits}")
79
 
80
  print(f"***processing time: {(time.time() - start):.2f} s")
81
  # First, rescale logits to original image size
82
  interpolated_logits = nn.functional.interpolate(
83
- outputs.logits,
84
  size=[1024, 1024], #resized_image.size[::-1], # (height, width)
85
  mode='bilinear',
86
  align_corners=False)
87
- print(f"{interpolated_logits.shape=}, {outputs.logits.shape=}") # 1, 19, 1024, 1024
88
 
89
  # Second, apply argmax on the class dimension
90
  seg = interpolated_logits.argmax(dim=1)[0]
 
15
  print(f"Is CUDA available: {torch.cuda.is_available()} --> {device=}")
16
  if (torch.cuda.is_available()):
17
  print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
18
+
19
  model.to(device)
20
 
21
  # https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
 
69
  # resized_image = Image.fromarray(resized_image_np)
70
  # print(f"{resized_image=}")
71
 
72
+ inputs = feature_extractor(images=resized_image, return_tensors="pt").to(device)
73
+
74
  print(f"**processing time: {(time.time() - start):.2f} s")
75
 
76
  outputs = model(**inputs)
77
+ logits = outputs.logits.cpu()
78
+
79
+ print(f"{logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
80
  # print(f"{logits}")
81
 
82
  print(f"***processing time: {(time.time() - start):.2f} s")
83
  # First, rescale logits to original image size
84
  interpolated_logits = nn.functional.interpolate(
85
+ logits,
86
  size=[1024, 1024], #resized_image.size[::-1], # (height, width)
87
  mode='bilinear',
88
  align_corners=False)
89
+ print(f"{interpolated_logits.shape=}, {logits.shape=}") # 1, 19, 1024, 1024
90
 
91
  # Second, apply argmax on the class dimension
92
  seg = interpolated_logits.argmax(dim=1)[0]