Spaces:
Runtime error
Runtime error
from preprocess import load_datasets, DatasetArguments | |
from predict import ClassifierArguments, SEGMENT_MATCH_RE, CATEGORIES | |
from shared import CustomTokens, device, GeneralArguments, OutputArguments | |
from model import ModelArguments | |
import transformers | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import datasets | |
import pickle | |
from transformers import ( | |
DataCollatorForSeq2Seq, | |
HfArgumentParser, | |
Seq2SeqTrainer, | |
Seq2SeqTrainingArguments, | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM | |
) | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from utils import re_findall | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version('4.13.0.dev0') | |
require_version('datasets>=1.8.0', | |
'To fix: pip install -r requirements.txt') | |
os.environ['WANDB_DISABLED'] = 'true' | |
logger = logging.getLogger(__name__) | |
# Setup logging | |
logging.basicConfig( | |
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt='%m/%d/%Y %H:%M:%S', | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={'help': 'The number of processes to use for the preprocessing.'}, | |
) | |
# https://github.com/huggingface/transformers/issues/5204 | |
max_source_length: Optional[int] = field( | |
default=512, | |
metadata={ | |
'help': 'The maximum total input sequence length after tokenization. Sequences longer ' | |
'than this will be truncated, sequences shorter will be padded.' | |
}, | |
) | |
max_target_length: Optional[int] = field( | |
default=512, | |
metadata={ | |
'help': 'The maximum total sequence length for target text after tokenization. Sequences longer ' | |
'than this will be truncated, sequences shorter will be padded.' | |
}, | |
) | |
val_max_target_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
'help': 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' | |
'than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.' | |
'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' | |
'during ``evaluate`` and ``predict``.' | |
}, | |
) | |
pad_to_max_length: bool = field( | |
default=False, | |
metadata={ | |
'help': 'Whether to pad all samples to model maximum sentence length. ' | |
'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' | |
'efficient on GPU but very bad for TPU.' | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
'help': 'For debugging purposes or quicker training, truncate the number of training examples to this value if set.' | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
'help': 'For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set.' | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
'help': 'For debugging purposes or quicker training, truncate the number of prediction examples to this value if set.' | |
}, | |
) | |
num_beams: Optional[int] = field( | |
default=None, | |
metadata={ | |
'help': 'Number of beams to use for evaluation. This argument will be passed to ``model.generate``, ' | |
'which is used during ``evaluate`` and ``predict``.' | |
}, | |
) | |
ignore_pad_token_for_loss: bool = field( | |
default=True, | |
metadata={ | |
'help': 'Whether to ignore the tokens corresponding to padded labels in the loss computation or not.' | |
}, | |
) | |
source_prefix: Optional[str] = field( | |
default=CustomTokens.EXTRACT_SEGMENTS_PREFIX.value, metadata={ | |
'help': 'A prefix to add before every source text (useful for T5 models).'} | |
) | |
# TODO add vectorizer params | |
def __post_init__(self): | |
if self.val_max_target_length is None: | |
self.val_max_target_length = self.max_target_length | |
class SequenceTrainingArguments(OutputArguments, Seq2SeqTrainingArguments): | |
seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed'] | |
num_train_epochs: float = field( | |
default=1, metadata={'help': 'Total number of training epochs to perform.'}) | |
save_steps: int = field(default=5000, metadata={ | |
'help': 'Save checkpoint every X updates steps.'}) | |
eval_steps: int = field(default=5000, metadata={ | |
'help': 'Run an evaluation every X steps.'}) | |
logging_steps: int = field(default=5000, metadata={ | |
'help': 'Log every X updates steps.'}) | |
skip_train_transformer: bool = field(default=False, metadata={ | |
'help': 'Whether to skip training the transformer.'}) | |
train_classifier: bool = field(default=False, metadata={ | |
'help': 'Whether to run training on the 2nd phase (classifier).'}) | |
# do_eval: bool = field(default=False, metadata={ | |
# 'help': 'Whether to run eval on the dev set.'}) | |
do_predict: bool = field(default=False, metadata={ | |
'help': 'Whether to run predictions on the test set.'}) | |
per_device_train_batch_size: int = field( | |
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'} | |
) | |
per_device_eval_batch_size: int = field( | |
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'} | |
) | |
# report_to: Optional[List[str]] = field( | |
# default=None, metadata={"help": "The list of integrations to report the results and logs to."} | |
# ) | |
evaluation_strategy: str = field( | |
default='steps', | |
metadata={ | |
'help': 'The evaluation strategy to use.', | |
'choices': ['no', 'steps', 'epoch'] | |
}, | |
) | |
# evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`): | |
# The evaluation strategy to adopt during training. Possible values are: | |
# * :obj:`"no"`: No evaluation is done during training. | |
# * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. | |
# * :obj:`"epoch"`: Evaluation is done at the end of each epoch. | |
def main(): | |
# reset() | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
hf_parser = HfArgumentParser(( | |
ModelArguments, | |
DatasetArguments, | |
DataTrainingArguments, | |
SequenceTrainingArguments, | |
ClassifierArguments | |
)) | |
model_args, dataset_args, data_training_args, training_args, classifier_args = hf_parser.parse_args_into_dataclasses() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Set seed before initializing model. | |
# set_seed(training_args.seed) | |
# Log on each process the small summary: | |
logger.warning( | |
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' | |
+ f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}' | |
) | |
logger.info(f'Training/evaluation parameters {training_args}') | |
# FP16 https://github.com/huggingface/transformers/issues/9295 | |
# Works: | |
# https://huggingface.co/docs/transformers/model_doc/t5v1.1 | |
# google/t5-v1_1-small | |
# google/t5-v1_1-base | |
# google/t5-v1_1-large | |
# google/t5-v1_1-xl | |
# google/t5-v1_1-xxl | |
# https://huggingface.co/docs/transformers/model_doc/t5 | |
# t5-small | |
# t5-base | |
# t5-large | |
# t5-3b | |
# t5-11b | |
# allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810 | |
# Further work: | |
# Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5 | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
if training_args.skip_train_transformer and not training_args.train_classifier: | |
print('Nothing to do. Exiting') | |
return | |
raw_datasets = load_datasets(dataset_args) | |
# , cache_dir=model_args.cache_dir | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
if training_args.train_classifier: | |
print('Train classifier') | |
# 1. Vectorize raw data to pass into classifier | |
# CountVectorizer TfidfVectorizer | |
# TfidfVectorizer - better (comb of CountVectorizer) | |
vectorizer = TfidfVectorizer( # CountVectorizer | |
# lowercase=False, | |
# stop_words='english', # TODO optimise stop words? | |
# stop_words=stop_words, | |
ngram_range=(1, 2), # best so far | |
# max_features=8000 # remove for higher accuracy? | |
max_features=20000 | |
# max_features=10000 | |
# max_features=1000 | |
) | |
train_test_data = { | |
'train': { | |
'X': [], | |
'y': [] | |
}, | |
'test': { | |
'X': [], | |
'y': [] | |
} | |
} | |
print('Splitting') | |
for ds_type in train_test_data: | |
dataset = raw_datasets[ds_type] | |
for row in dataset: | |
matches = re_findall(SEGMENT_MATCH_RE, row['extracted']) | |
if matches: | |
for match in matches: | |
train_test_data[ds_type]['X'].append(match['text']) | |
class_index = CATEGORIES.index(match['category']) | |
train_test_data[ds_type]['y'].append(class_index) | |
else: | |
train_test_data[ds_type]['X'].append(row['text']) | |
train_test_data[ds_type]['y'].append(0) | |
print('Fitting') | |
_X_train = vectorizer.fit_transform(train_test_data['train']['X']) | |
_X_test = vectorizer.transform(train_test_data['test']['X']) | |
y_train = train_test_data['train']['y'] | |
y_test = train_test_data['test']['y'] | |
# 2. Create classifier | |
classifier = LogisticRegression(max_iter=2000, class_weight='balanced') | |
# 3. Fit data | |
print('Fit classifier') | |
classifier.fit(_X_train, y_train) | |
# 4. Measure accuracy | |
accuracy = classifier.score(_X_test, y_test) | |
print(f'[LogisticRegression] Accuracy percent:', | |
round(accuracy*100, 3)) | |
# 5. Save classifier and vectorizer | |
with open(os.path.join(classifier_args.classifier_dir, classifier_args.classifier_file), 'wb') as fp: | |
pickle.dump(classifier, fp) | |
with open(os.path.join(classifier_args.classifier_dir, classifier_args.vectorizer_file), 'wb') as fp: | |
pickle.dump(vectorizer, fp) | |
if not training_args.skip_train_transformer: | |
if data_training_args.source_prefix is None and 't5-' in model_args.model_name_or_path: | |
logger.warning( | |
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with `--source_prefix 'summarize: ' `" | |
) | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.' | |
) | |
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
logger.info( | |
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' | |
) | |
# Load pretrained model and tokenizer | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path) | |
model.to(device()) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path) | |
# Ensure model and tokenizer contain the custom tokens | |
CustomTokens.add_custom_tokens(tokenizer) | |
model.resize_token_embeddings(len(tokenizer)) | |
if model.config.decoder_start_token_id is None: | |
raise ValueError( | |
'Make sure that `config.decoder_start_token_id` is correctly defined') | |
if hasattr(model.config, 'max_position_embeddings') and model.config.max_position_embeddings < data_training_args.max_source_length: | |
if model_args.resize_position_embeddings is None: | |
logger.warning( | |
f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} to {data_training_args.max_source_length}." | |
) | |
model.resize_position_embeddings( | |
data_training_args.max_source_length) | |
elif model_args.resize_position_embeddings: | |
model.resize_position_embeddings( | |
data_training_args.max_source_length) | |
else: | |
raise ValueError( | |
f'`--max_source_length` is set to {data_training_args.max_source_length}, but the model only has {model.config.max_position_embeddings}' | |
f' position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically ' | |
"resize the model's position encodings by passing `--resize_position_embeddings`." | |
) | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
column_names = raw_datasets['train'].column_names | |
# Temporarily set max_target_length for training. | |
max_target_length = data_training_args.max_target_length | |
padding = 'max_length' if data_training_args.pad_to_max_length else False | |
if training_args.label_smoothing_factor > 0 and not hasattr(model, 'prepare_decoder_input_ids_from_labels'): | |
logger.warning( | |
'label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for' | |
f'`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory' | |
) | |
prefix = data_training_args.source_prefix if data_training_args.source_prefix is not None else '' | |
# https://github.com/huggingface/transformers/issues/5204 | |
def preprocess_function(examples): | |
inputs = examples['text'] | |
targets = examples['extracted'] | |
inputs = [prefix + inp for inp in inputs] | |
model_inputs = tokenizer( | |
inputs, max_length=data_training_args.max_source_length, padding=padding, truncation=True) | |
# Setup the tokenizer for targets | |
with tokenizer.as_target_tokenizer(): | |
labels = tokenizer( | |
targets, max_length=max_target_length, padding=padding, truncation=True) | |
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
# padding in the loss. | |
if padding == 'max_length' and data_training_args.ignore_pad_token_for_loss: | |
labels['input_ids'] = [ | |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids'] | |
] | |
model_inputs['labels'] = labels['input_ids'] | |
return model_inputs | |
def prepare_dataset(dataset, desc): | |
return dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_training_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not dataset_args.overwrite_cache, | |
desc=desc, # tokenizing train dataset | |
) | |
# train_dataset # TODO shuffle? | |
# if training_args.do_train: | |
if 'train' not in raw_datasets: # TODO do checks above? | |
raise ValueError('Train dataset missing') | |
train_dataset = raw_datasets['train'] | |
if data_training_args.max_train_samples is not None: | |
train_dataset = train_dataset.select( | |
range(data_training_args.max_train_samples)) | |
with training_args.main_process_first(desc='train dataset map pre-processing'): | |
train_dataset = prepare_dataset( | |
train_dataset, desc='Running tokenizer on train dataset') | |
max_target_length = data_training_args.val_max_target_length | |
if 'validation' not in raw_datasets: | |
raise ValueError('Validation dataset missing') | |
eval_dataset = raw_datasets['validation'] | |
if data_training_args.max_eval_samples is not None: | |
eval_dataset = eval_dataset.select( | |
range(data_training_args.max_eval_samples)) | |
with training_args.main_process_first(desc='validation dataset map pre-processing'): | |
eval_dataset = prepare_dataset( | |
eval_dataset, desc='Running tokenizer on validation dataset') | |
if 'test' not in raw_datasets: | |
raise ValueError('Test dataset missing') | |
predict_dataset = raw_datasets['test'] | |
if data_training_args.max_predict_samples is not None: | |
predict_dataset = predict_dataset.select( | |
range(data_training_args.max_predict_samples)) | |
with training_args.main_process_first(desc='prediction dataset map pre-processing'): | |
predict_dataset = prepare_dataset( | |
predict_dataset, desc='Running tokenizer on prediction dataset') | |
# Data collator | |
label_pad_token_id = - \ | |
100 if data_training_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
model=model, | |
label_pad_token_id=label_pad_token_id, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
) | |
# Done processing datasets | |
# Initialize our Trainer | |
trainer = Seq2SeqTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Training | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
try: | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
except KeyboardInterrupt: | |
# TODO add option to save model on interrupt? | |
# print('Saving model') | |
# trainer.save_model(os.path.join( | |
# training_args.output_dir, 'checkpoint-latest')) # TODO use dir | |
raise | |
metrics = train_result.metrics | |
max_train_samples = data_training_args.max_train_samples or len( | |
train_dataset) | |
metrics['train_samples'] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics('train', metrics) | |
trainer.save_metrics('train', metrics) | |
trainer.save_state() | |
kwargs = {'finetuned_from': model_args.model_name_or_path, | |
'tasks': 'summarization'} | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
if __name__ == '__main__': | |
main() | |