File size: 1,386 Bytes
ef0ee1c 0f8ea51 00bbe3c 8ae3c08 00bbe3c db62c46 00bbe3c 8fd60b9 db62c46 8fd60b9 00bbe3c 8fd60b9 db62c46 8fd60b9 00bbe3c db62c46 00bbe3c db62c46 00bbe3c db62c46 00bbe3c db62c46 00bbe3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
title: Ae Gen
emoji: 💻
colorFrom: yellow
colorTo: pink
sdk: gradio
sdk_version: 3.16.2
app_file: app.py
pinned: false
license: mit
---
Official release of:
- ConvAE model (from [`Digits that are not: Generating new types through deep neural nets`](https://arxiv.org/pdf/1606.04345.pdf))
- DeepConvAE model (from [here](https://tel.archives-ouvertes.fr/tel-01838272/file/75406_CHERTI_2018_diffusion.pdf), Section 10.1 with `L=3`)
- Dense K-Sparse model (from [`Out-of-class novelty generation`](https://openreview.net/forum?id=r1QXQkSYg))
These models were trained on MNIST only (digits), but were found to generate new kinds of symbols, see the references for more details.
Check <https://huggingface.co/spaces/mehdidc/ae_gen/blob/main/README.md> for more details.
![](image.png)
# Install requirements
`pip install -r requirements.txt`
# Download models
```bash
git lfs pull
```
# Generate samples
```bash
python cli.py test --model-path=convae.th --nb-generate=100 --folder=convae
```
```bash
python cli.py test --model-path=deep_convae.th --nb-generate=100 --folder=deep_convae
```
```bash
python cli.py test --model-path=fc_sparse.th --nb-generate=100 --folder=deep_convae
```
# Training
```bash
python cli.py train --dataset=mnist --folder=convae --model=convae
```
```bash
python cli.py train --dataset=mnist --folder=deep_convae --model=deep_convae
```
|