import torch | |
import numpy as np | |
from machinedesign.autoencoder.interface import load | |
from keras.models import Model | |
torch.use_deterministic_algorithms(True) | |
model = torch.load("mnist_deepconvae/model.th") | |
model_keras = load("/home/mehdi/work/code/out_of_class/ae/mnist") | |
print(model_keras.layers[8]) | |
m = Model(model_keras.inputs, model_keras.layers[8].output) | |
X = torch.rand(1,1,28,28) | |
with torch.no_grad(): | |
# X1 = model.sparsify(model.encode(X)) | |
X1 = model(X) | |
X2 = model_keras.predict(X) | |
X2 = torch.from_numpy(X2) | |
print(torch.abs(X1-X2).sum()) | |
# for i in range(128): | |
# print(i, torch.abs(X1[0,i]-X2[0,i]).sum()) | |
# print(X1[0,i, 0, :]) | |
# print(X2[0,i,0, :]) | |