Spaces:
Runtime error
Runtime error
File size: 4,863 Bytes
b3640b9 2a10b61 b3640b9 2a10b61 b3640b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import os, glob, sys, logging
import argparse, datetime, time
import numpy as np
import cv2
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from models import model, basic
from utils import util
def setup_model(checkpt_path, device="cuda"):
#print('--------------', torch.cuda.is_available())
"""Load the model into memory to make running multiple predictions efficient"""
colorLabeler = basic.ColorLabel(device=device)
colorizer = model.AnchorColorProb(inChannel=1, outChannel=313, enhanced=True, colorLabeler=colorLabeler)
colorizer = colorizer.to(device)
#checkpt_path = "./checkpoints/disco-beta.pth.rar"
assert os.path.exists(checkpt_path), "No checkpoint found!"
data_dict = torch.load(checkpt_path, map_location=torch.device('cpu'))
colorizer.load_state_dict(data_dict['state_dict'])
colorizer.eval()
return colorizer, colorLabeler
def resize_ab2l(gray_img, lab_imgs, vis=False):
H, W = gray_img.shape[:2]
reszied_ab = cv2.resize(lab_imgs[:,:,1:], (W,H), interpolation=cv2.INTER_LINEAR)
if vis:
gray_img = cv2.resize(lab_imgs[:,:,:1], (W,H), interpolation=cv2.INTER_LINEAR)
return np.concatenate((gray_img[:,:,np.newaxis], reszied_ab), axis=2)
else:
return np.concatenate((gray_img, reszied_ab), axis=2)
def prepare_data(rgb_img, target_res):
rgb_img = np.array(rgb_img / 255., np.float32)
lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
org_grays = (lab_img[:,:,[0]]-50.) / 50.
lab_img = cv2.resize(lab_img, target_res, interpolation=cv2.INTER_LINEAR)
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
gray_img = (lab_img[0:1,:,:]-50.) / 50.
ab_chans = lab_img[1:3,:,:] / 110.
input_grays = gray_img.unsqueeze(0)
input_colors = ab_chans.unsqueeze(0)
return input_grays, input_colors, org_grays
def colorize_grayscale(colorizer, color_class, rgb_img, hint_img, n_anchors, is_high_res, is_editable, device="cuda"):
n_anchors = int(n_anchors)
n_anchors = max(n_anchors, 3)
n_anchors = min(n_anchors, 14)
target_res = (512,512) if is_high_res else (256,256)
input_grays, input_colors, org_grays = prepare_data(rgb_img, target_res)
input_grays = input_grays.to(device)
input_colors = input_colors.to(device)
if is_editable:
print('>>>:editable mode')
sampled_T = -1
_, input_colors, _ = prepare_data(hint_img, target_res)
input_colors = input_colors.to(device)
pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \
input_colors, n_anchors, sampled_T)
else:
print('>>>:automatic mode')
sampled_T = 0
pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \
input_colors, n_anchors, sampled_T)
pred_labs = torch.cat((input_grays,enhanced_ab), dim=1)
lab_imgs = basic.tensor2array(pred_labs).squeeze(axis=0)
lab_imgs = resize_ab2l(org_grays, lab_imgs)
lab_imgs[:,:,0] = lab_imgs[:,:,0] * 50.0 + 50.0
lab_imgs[:,:,1:3] = lab_imgs[:,:,1:3] * 110.0
rgb_output = cv2.cvtColor(lab_imgs[:,:,:], cv2.COLOR_LAB2RGB)
return (rgb_output*255.0).astype(np.uint8)
def predict_anchors(colorizer, color_class, rgb_img, n_anchors, is_high_res, is_editable, device="cuda"):
n_anchors = int(n_anchors)
n_anchors = max(n_anchors, 3)
n_anchors = min(n_anchors, 14)
target_res = (512,512) if is_high_res else (256,256)
input_grays, input_colors, org_grays = prepare_data(rgb_img, target_res)
input_grays = input_grays.to(device)
input_colors = input_colors.to(device)
sampled_T, sp_size = 0, 16
pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = colorizer(input_grays, \
input_colors, n_anchors, sampled_T)
pred_probs = pal_logit
guided_colors = color_class.decode_ind2ab(ref_logit, T=0)
guided_colors = basic.upfeat(guided_colors, affinity_map, sp_size, sp_size)
anchor_masks = basic.upfeat(hint_mask, affinity_map, sp_size, sp_size)
marked_labs = basic.mark_color_hints(input_grays, guided_colors, anchor_masks, base_ABs=None)
lab_imgs = basic.tensor2array(marked_labs).squeeze(axis=0)
lab_imgs = resize_ab2l(org_grays, lab_imgs, vis=True)
lab_imgs[:,:,0] = lab_imgs[:,:,0] * 50.0 + 50.0
lab_imgs[:,:,1:3] = lab_imgs[:,:,1:3] * 110.0
rgb_output = cv2.cvtColor(lab_imgs[:,:,:], cv2.COLOR_LAB2RGB)
return (rgb_output*255.0).astype(np.uint8) |