merve's picture
merve HF staff
Update app.py
2958a16 verified
from transformers import AutoTokenizer, CLIPProcessor, SiglipModel, AutoProcessor
import requests
from PIL import Image
from modeling_nllb_clip import NLLBCLIPModel
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer, util
from PIL import Image, ImageFile
import requests
import torch
import numpy as np
import gradio as gr
import spaces
## NLLB Inference
nllb_clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
nllb_clip_processor = nllb_clip_processor.image_processor
nllb_clip_tokenizer = AutoTokenizer.from_pretrained(
"facebook/nllb-200-distilled-600M"
)
def nllb_clip_inference(image,labels):
labels = labels.split(",")
image_inputs = nllb_clip_processor(images=image, return_tensors="pt")
text_inputs = nllb_clip_tokenizer(labels, padding="longest", return_tensors="pt",)
nllb_clip_model = NLLBCLIPModel.from_pretrained("visheratin/nllb-clip-base")
outputs = nllb_clip_model(input_ids = text_inputs.input_ids, attention_mask = text_inputs.attention_mask, pixel_values=image_inputs.pixel_values)
normalized_tensor = F.softmax(outputs["logits_per_text"], dim=0)
normalized_tensor = normalized_tensor.detach().numpy()
return {labels[i]: float(np.array(normalized_tensor)[i]) for i in range(len(labels))}
# SentenceTransformers CLIP-ViT-B-32
img_model = SentenceTransformer('clip-ViT-B-32')
text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')
def infer_st(image, texts):
texts = texts.split(",")
img_embeddings = img_model.encode(image)
text_embeddings = text_model.encode(texts)
cos_sim = util.cos_sim(text_embeddings, img_embeddings)
return {texts[i]: float(np.array(cos_sim)[i]) for i in range(len(texts))}
### SigLIP Inference
siglip_model = SiglipModel.from_pretrained("google/siglip-base-patch16-256-multilingual")
siglip_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-256-multilingual")
def postprocess_siglip(output, labels):
return {labels[i]: float(np.array(output[0])[i]) for i in range(len(labels))}
def siglip_detector(image, texts):
inputs = siglip_processor(text=texts, images=image, return_tensors="pt",
padding="max_length")
with torch.no_grad():
outputs = siglip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
probs = normalize_tensor(probs)
return probs
def normalize_tensor(tensor):
# no other normalization works well for visual purposes
sum_tensor = torch.sum(tensor)
normalized_tensor = tensor / sum_tensor
return normalized_tensor
def infer_siglip(image, candidate_labels):
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
siglip_out = siglip_detector(image, candidate_labels)
return postprocess_siglip(siglip_out, labels=candidate_labels)
@spaces.GPU
def infer(image, labels):
st_out = infer_st(image, labels)
nllb_out = nllb_clip_inference(image, labels)
siglip_out = infer_siglip(image, labels)
return st_out, siglip_out, nllb_out
with gr.Blocks() as demo:
gr.Markdown("# Compare Multilingual Zero-shot Image Classification")
gr.Markdown("Compare the performance of SigLIP and other models on zero-shot classification in this Space.")
gr.Markdown("Three models are compared: CLIP-ViT, NLLB-CLIP and SigLIP. Note that SigLIP outputs are normalized for visualization purposes.")
gr.Markdown("NLLB-CLIP is a multilingual vision-language model that combines [NLLB](https://ai.meta.com/research/no-language-left-behind/) with [CLIP](https://openai.com/research/clip) to extend CLIP to 200+ languages.")
gr.Markdown("CLIP-ViT is CLIP model extended to other languages using [multilingual knowledge distillation](https://arxiv.org/abs/2004.09813).")
gr.Markdown("Finally, SigLIP is the state-of-the-art vision-language model released by Google. Multilingual checkpoint is pre-trained by Google.")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
text_input = gr.Textbox(label="Input a list of labels")
run_button = gr.Button("Run", visible=True)
with gr.Column():
st_output = gr.Label(label = "CLIP-ViT Multilingual Output", num_top_classes=3)
siglip_output = gr.Label(label = "SigLIP Output", num_top_classes=3)
nllb_output = gr.Label(label = "NLLB-CLIP Output", num_top_classes=3)
examples = [["./cat.jpg", "eine Katze, köpek, un oiseau"]]
gr.Examples(
examples = examples,
inputs=[image_input, text_input],
outputs=[st_output,
siglip_output,
nllb_output],
fn=infer,
cache_examples=True
)
run_button.click(fn=infer,
inputs=[image_input, text_input],
outputs=[st_output,
siglip_output,
nllb_output])
demo.launch()