Spaces:
Running
on
Zero
Running
on
Zero
""" NLLB-CLIP model configuration""" | |
import os | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union | |
if TYPE_CHECKING: | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.utils import TensorType | |
from transformers import CLIPVisionConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.onnx import OnnxConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class NLLBCLIPTextConfig(PretrainedConfig): | |
model_type = "clip_text_model" | |
attribute_map = { | |
"num_attention_heads": "encoder_attention_heads", | |
"hidden_size": "d_model", | |
} | |
def __init__( | |
self, | |
vocab_size=128112, | |
max_position_embeddings=1024, | |
encoder_layers=12, | |
encoder_ffn_dim=4096, | |
encoder_attention_heads=16, | |
encoder_layerdrop=0.05, | |
use_cache=True, | |
activation_function="relu", | |
d_model=1024, | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.0, | |
init_std=0.02, | |
scale_embedding=True, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
layer_norm_eps=1e-5, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.scale_embedding = scale_embedding | |
self.layer_norm_eps = layer_norm_eps | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
**kwargs, | |
) | |
def from_pretrained( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict( | |
pretrained_model_name_or_path, **kwargs | |
) | |
# get the vision config dict if we are loading from CLIPConfig | |
if config_dict.get("model_type") == "clip": | |
config_dict = config_dict["text_config"] | |
if ( | |
"model_type" in config_dict | |
and hasattr(cls, "model_type") | |
and config_dict["model_type"] != cls.model_type | |
): | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class NLLBCLIPConfig(PretrainedConfig): | |
model_type = "clip" | |
def __init__( | |
self, | |
text_config=None, | |
vision_config=None, | |
projection_dim=512, | |
logit_scale_init_value=2.6592, | |
**kwargs, | |
): | |
# If `_config_dict` exist, we use them for the backward compatibility. | |
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
# of confusion!). | |
text_config_dict = kwargs.pop("text_config_dict", None) | |
vision_config_dict = kwargs.pop("vision_config_dict", None) | |
super().__init__(**kwargs) | |
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
if text_config_dict is not None: | |
if text_config is None: | |
text_config = {} | |
# This is the complete result when using `text_config_dict`. | |
_text_config_dict = NLLBCLIPTextConfig(**text_config_dict).to_dict() | |
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
for key, value in _text_config_dict.items(): | |
if ( | |
key in text_config | |
and value != text_config[key] | |
and key not in ["transformers_version"] | |
): | |
# If specified in `text_config_dict` | |
if key in text_config_dict: | |
message = ( | |
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
f'The value `text_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The " | |
f'value `text_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `text_config` with the ones in `_text_config_dict`. | |
text_config.update(_text_config_dict) | |
if vision_config_dict is not None: | |
if vision_config is None: | |
vision_config = {} | |
# This is the complete result when using `vision_config_dict`. | |
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict() | |
# convert keys to string instead of integer | |
if "id2label" in _vision_config_dict: | |
_vision_config_dict["id2label"] = { | |
str(key): value | |
for key, value in _vision_config_dict["id2label"].items() | |
} | |
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. | |
for key, value in _vision_config_dict.items(): | |
if ( | |
key in vision_config | |
and value != vision_config[key] | |
and key not in ["transformers_version"] | |
): | |
# If specified in `vision_config_dict` | |
if key in vision_config_dict: | |
message = ( | |
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " | |
f'values. The value `vision_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. " | |
f'The value `vision_config["{key}"]` will be overriden.' | |
) | |
logger.warning(message) | |
# Update all values in `vision_config` with the ones in `_vision_config_dict`. | |
vision_config.update(_vision_config_dict) | |
if text_config is None: | |
text_config = {} | |
logger.info( | |
"`text_config` is `None`. Initializing the `NLLBCLIPTextConfig` with default values." | |
) | |
if vision_config is None: | |
vision_config = {} | |
logger.info( | |
"`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values." | |
) | |
self.text_config = NLLBCLIPTextConfig(**text_config) | |
self.vision_config = CLIPVisionConfig(**vision_config) | |
self.projection_dim = projection_dim | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = 1.0 | |
def from_text_vision_configs( | |
cls, text_config: NLLBCLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs | |
): | |
r""" | |
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model | |
configuration. | |
Returns: | |
[`CLIPConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
text_config=text_config.to_dict(), | |
vision_config=vision_config.to_dict(), | |
**kwargs, | |
) | |
class CLIPOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("input_ids", {0: "batch", 1: "sequence"}), | |
("attention_mask", {0: "batch", 1: "sequence"}), | |
( | |
"pixel_values", | |
{0: "batch", 1: "num_channels", 2: "height", 3: "width"}, | |
), | |
] | |
) | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("logits_per_image", {0: "batch"}), | |
("logits_per_text", {0: "batch"}), | |
("text_embeds", {0: "batch"}), | |
("image_embeds", {0: "batch"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |
def generate_dummy_inputs( | |
self, | |
processor: "ProcessorMixin", | |
batch_size: int = -1, | |
seq_length: int = -1, | |
framework: Optional["TensorType"] = None, | |
) -> Mapping[str, Any]: | |
text_input_dict = super().generate_dummy_inputs( | |
processor.tokenizer, | |
batch_size=batch_size, | |
seq_length=seq_length, | |
framework=framework, | |
) | |
image_input_dict = super().generate_dummy_inputs( | |
processor.image_processor, batch_size=batch_size, framework=framework | |
) | |
return {**text_input_dict, **image_input_dict} | |
def default_onnx_opset(self) -> int: | |
return 14 | |