Spaces:
Running
on
Zero
Running
on
Zero
Upload modeling_nllb_clip.py
Browse files- modeling_nllb_clip.py +1403 -0
modeling_nllb_clip.py
ADDED
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch NLLB CLIP model."""
|
2 |
+
|
3 |
+
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from configuration_nllb_clip import NLLBCLIPConfig, NLLBCLIPTextConfig
|
11 |
+
from torch import nn
|
12 |
+
from transformers import CLIPVisionConfig
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
15 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import ModelOutput, logging
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
# contrastive loss function, adapted from
|
23 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
24 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
25 |
+
return nn.functional.cross_entropy(
|
26 |
+
logits, torch.arange(len(logits), device=logits.device)
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
31 |
+
caption_loss = contrastive_loss(similarity)
|
32 |
+
image_loss = contrastive_loss(similarity.t())
|
33 |
+
return (caption_loss + image_loss) / 2.0
|
34 |
+
|
35 |
+
|
36 |
+
class CLIPVisionEmbeddings(nn.Module):
|
37 |
+
def __init__(self, config: CLIPVisionConfig):
|
38 |
+
super().__init__()
|
39 |
+
self.config = config
|
40 |
+
self.embed_dim = config.hidden_size
|
41 |
+
self.image_size = config.image_size
|
42 |
+
self.patch_size = config.patch_size
|
43 |
+
|
44 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
45 |
+
|
46 |
+
self.patch_embedding = nn.Conv2d(
|
47 |
+
in_channels=config.num_channels,
|
48 |
+
out_channels=self.embed_dim,
|
49 |
+
kernel_size=self.patch_size,
|
50 |
+
stride=self.patch_size,
|
51 |
+
bias=False,
|
52 |
+
)
|
53 |
+
|
54 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
55 |
+
self.num_positions = self.num_patches + 1
|
56 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
57 |
+
self.register_buffer(
|
58 |
+
"position_ids",
|
59 |
+
torch.arange(self.num_positions).expand((1, -1)),
|
60 |
+
persistent=False,
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
64 |
+
batch_size = pixel_values.shape[0]
|
65 |
+
target_dtype = self.patch_embedding.weight.dtype
|
66 |
+
patch_embeds = self.patch_embedding(
|
67 |
+
pixel_values.to(dtype=target_dtype)
|
68 |
+
) # shape = [*, width, grid, grid]
|
69 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
70 |
+
|
71 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
72 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
73 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
74 |
+
return embeddings
|
75 |
+
|
76 |
+
|
77 |
+
class CLIPAttention(nn.Module):
|
78 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
79 |
+
|
80 |
+
def __init__(self, config):
|
81 |
+
super().__init__()
|
82 |
+
self.config = config
|
83 |
+
self.embed_dim = config.hidden_size
|
84 |
+
self.num_heads = config.num_attention_heads
|
85 |
+
self.head_dim = self.embed_dim // self.num_heads
|
86 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
87 |
+
raise ValueError(
|
88 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
89 |
+
f" {self.num_heads})."
|
90 |
+
)
|
91 |
+
self.scale = self.head_dim**-0.5
|
92 |
+
self.dropout = config.attention_dropout
|
93 |
+
|
94 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
95 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
96 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
97 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
98 |
+
|
99 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
100 |
+
return (
|
101 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
102 |
+
.transpose(1, 2)
|
103 |
+
.contiguous()
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
hidden_states: torch.Tensor,
|
109 |
+
attention_mask: Optional[torch.Tensor] = None,
|
110 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
111 |
+
output_attentions: Optional[bool] = False,
|
112 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
113 |
+
"""Input shape: Batch x Time x Channel"""
|
114 |
+
|
115 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
116 |
+
|
117 |
+
# get query proj
|
118 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
119 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
120 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
121 |
+
|
122 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
123 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
124 |
+
key_states = key_states.view(*proj_shape)
|
125 |
+
value_states = value_states.view(*proj_shape)
|
126 |
+
|
127 |
+
src_len = key_states.size(1)
|
128 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
129 |
+
|
130 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
131 |
+
raise ValueError(
|
132 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
133 |
+
f" {attn_weights.size()}"
|
134 |
+
)
|
135 |
+
|
136 |
+
# apply the causal_attention_mask first
|
137 |
+
if causal_attention_mask is not None:
|
138 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
139 |
+
raise ValueError(
|
140 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
141 |
+
f" {causal_attention_mask.size()}"
|
142 |
+
)
|
143 |
+
attn_weights = (
|
144 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
145 |
+
+ causal_attention_mask
|
146 |
+
)
|
147 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
148 |
+
|
149 |
+
if attention_mask is not None:
|
150 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
151 |
+
raise ValueError(
|
152 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
153 |
+
)
|
154 |
+
attn_weights = (
|
155 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
156 |
+
+ attention_mask
|
157 |
+
)
|
158 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
159 |
+
|
160 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
161 |
+
|
162 |
+
if output_attentions:
|
163 |
+
# this operation is a bit akward, but it's required to
|
164 |
+
# make sure that attn_weights keeps its gradient.
|
165 |
+
# In order to do so, attn_weights have to reshaped
|
166 |
+
# twice and have to be reused in the following
|
167 |
+
attn_weights_reshaped = attn_weights.view(
|
168 |
+
bsz, self.num_heads, tgt_len, src_len
|
169 |
+
)
|
170 |
+
attn_weights = attn_weights_reshaped.view(
|
171 |
+
bsz * self.num_heads, tgt_len, src_len
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
attn_weights_reshaped = None
|
175 |
+
|
176 |
+
attn_probs = nn.functional.dropout(
|
177 |
+
attn_weights, p=self.dropout, training=self.training
|
178 |
+
)
|
179 |
+
|
180 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
181 |
+
|
182 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
183 |
+
raise ValueError(
|
184 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
185 |
+
f" {attn_output.size()}"
|
186 |
+
)
|
187 |
+
|
188 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
189 |
+
attn_output = attn_output.transpose(1, 2)
|
190 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
191 |
+
|
192 |
+
attn_output = self.out_proj(attn_output)
|
193 |
+
|
194 |
+
return attn_output, attn_weights_reshaped
|
195 |
+
|
196 |
+
|
197 |
+
class CLIPMLP(nn.Module):
|
198 |
+
def __init__(self, config):
|
199 |
+
super().__init__()
|
200 |
+
self.config = config
|
201 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
202 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
203 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
204 |
+
|
205 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
206 |
+
hidden_states = self.fc1(hidden_states)
|
207 |
+
hidden_states = self.activation_fn(hidden_states)
|
208 |
+
hidden_states = self.fc2(hidden_states)
|
209 |
+
return hidden_states
|
210 |
+
|
211 |
+
|
212 |
+
class CLIPEncoderLayer(nn.Module):
|
213 |
+
def __init__(self, config: NLLBCLIPConfig):
|
214 |
+
super().__init__()
|
215 |
+
self.embed_dim = config.hidden_size
|
216 |
+
self.self_attn = CLIPAttention(config)
|
217 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
218 |
+
self.mlp = CLIPMLP(config)
|
219 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
hidden_states: torch.Tensor,
|
224 |
+
attention_mask: torch.Tensor,
|
225 |
+
causal_attention_mask: torch.Tensor,
|
226 |
+
output_attentions: Optional[bool] = False,
|
227 |
+
) -> Tuple[torch.FloatTensor]:
|
228 |
+
"""
|
229 |
+
Args:
|
230 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
231 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
232 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
233 |
+
`(config.encoder_attention_heads,)`.
|
234 |
+
output_attentions (`bool`, *optional*):
|
235 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
236 |
+
returned tensors for more detail.
|
237 |
+
"""
|
238 |
+
residual = hidden_states
|
239 |
+
|
240 |
+
hidden_states = self.layer_norm1(hidden_states)
|
241 |
+
hidden_states, attn_weights = self.self_attn(
|
242 |
+
hidden_states=hidden_states,
|
243 |
+
attention_mask=attention_mask,
|
244 |
+
causal_attention_mask=causal_attention_mask,
|
245 |
+
output_attentions=output_attentions,
|
246 |
+
)
|
247 |
+
hidden_states = residual + hidden_states
|
248 |
+
|
249 |
+
residual = hidden_states
|
250 |
+
hidden_states = self.layer_norm2(hidden_states)
|
251 |
+
hidden_states = self.mlp(hidden_states)
|
252 |
+
hidden_states = residual + hidden_states
|
253 |
+
|
254 |
+
outputs = (hidden_states,)
|
255 |
+
|
256 |
+
if output_attentions:
|
257 |
+
outputs += (attn_weights,)
|
258 |
+
|
259 |
+
return outputs
|
260 |
+
|
261 |
+
|
262 |
+
class CLIPEncoder(nn.Module):
|
263 |
+
"""
|
264 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
265 |
+
[`CLIPEncoderLayer`].
|
266 |
+
|
267 |
+
Args:
|
268 |
+
config: CLIPConfig
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(self, config: NLLBCLIPConfig):
|
272 |
+
super().__init__()
|
273 |
+
self.config = config
|
274 |
+
self.layers = nn.ModuleList(
|
275 |
+
[CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
276 |
+
)
|
277 |
+
self.gradient_checkpointing = False
|
278 |
+
|
279 |
+
def forward(
|
280 |
+
self,
|
281 |
+
inputs_embeds,
|
282 |
+
attention_mask: Optional[torch.Tensor] = None,
|
283 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
284 |
+
output_attentions: Optional[bool] = None,
|
285 |
+
output_hidden_states: Optional[bool] = None,
|
286 |
+
return_dict: Optional[bool] = None,
|
287 |
+
) -> Union[Tuple, BaseModelOutput]:
|
288 |
+
r"""
|
289 |
+
Args:
|
290 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
291 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
292 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
293 |
+
than the model's internal embedding lookup matrix.
|
294 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
295 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
296 |
+
|
297 |
+
- 1 for tokens that are **not masked**,
|
298 |
+
- 0 for tokens that are **masked**.
|
299 |
+
|
300 |
+
[What are attention masks?](../glossary#attention-mask)
|
301 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
302 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
303 |
+
|
304 |
+
- 1 for tokens that are **not masked**,
|
305 |
+
- 0 for tokens that are **masked**.
|
306 |
+
|
307 |
+
[What are attention masks?](../glossary#attention-mask)
|
308 |
+
output_attentions (`bool`, *optional*):
|
309 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
310 |
+
returned tensors for more detail.
|
311 |
+
output_hidden_states (`bool`, *optional*):
|
312 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
313 |
+
for more detail.
|
314 |
+
return_dict (`bool`, *optional*):
|
315 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
316 |
+
"""
|
317 |
+
output_attentions = (
|
318 |
+
output_attentions
|
319 |
+
if output_attentions is not None
|
320 |
+
else self.config.output_attentions
|
321 |
+
)
|
322 |
+
output_hidden_states = (
|
323 |
+
output_hidden_states
|
324 |
+
if output_hidden_states is not None
|
325 |
+
else self.config.output_hidden_states
|
326 |
+
)
|
327 |
+
return_dict = (
|
328 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
329 |
+
)
|
330 |
+
|
331 |
+
encoder_states = () if output_hidden_states else None
|
332 |
+
all_attentions = () if output_attentions else None
|
333 |
+
|
334 |
+
hidden_states = inputs_embeds
|
335 |
+
for idx, encoder_layer in enumerate(self.layers):
|
336 |
+
if output_hidden_states:
|
337 |
+
encoder_states = encoder_states + (hidden_states,)
|
338 |
+
if self.gradient_checkpointing and self.training:
|
339 |
+
|
340 |
+
def create_custom_forward(module):
|
341 |
+
def custom_forward(*inputs):
|
342 |
+
return module(*inputs, output_attentions)
|
343 |
+
|
344 |
+
return custom_forward
|
345 |
+
|
346 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
347 |
+
create_custom_forward(encoder_layer),
|
348 |
+
hidden_states,
|
349 |
+
attention_mask,
|
350 |
+
causal_attention_mask,
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
layer_outputs = encoder_layer(
|
354 |
+
hidden_states,
|
355 |
+
attention_mask,
|
356 |
+
causal_attention_mask,
|
357 |
+
output_attentions=output_attentions,
|
358 |
+
)
|
359 |
+
|
360 |
+
hidden_states = layer_outputs[0]
|
361 |
+
|
362 |
+
if output_attentions:
|
363 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
364 |
+
|
365 |
+
if output_hidden_states:
|
366 |
+
encoder_states = encoder_states + (hidden_states,)
|
367 |
+
|
368 |
+
if not return_dict:
|
369 |
+
return tuple(
|
370 |
+
v
|
371 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
372 |
+
if v is not None
|
373 |
+
)
|
374 |
+
return BaseModelOutput(
|
375 |
+
last_hidden_state=hidden_states,
|
376 |
+
hidden_states=encoder_states,
|
377 |
+
attentions=all_attentions,
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
class CLIPVisionTransformer(nn.Module):
|
382 |
+
def __init__(self, config: CLIPVisionConfig):
|
383 |
+
super().__init__()
|
384 |
+
self.config = config
|
385 |
+
embed_dim = config.hidden_size
|
386 |
+
|
387 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
388 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
389 |
+
self.encoder = CLIPEncoder(config)
|
390 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
395 |
+
output_attentions: Optional[bool] = None,
|
396 |
+
output_hidden_states: Optional[bool] = None,
|
397 |
+
return_dict: Optional[bool] = None,
|
398 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
399 |
+
r"""
|
400 |
+
Returns:
|
401 |
+
|
402 |
+
"""
|
403 |
+
output_attentions = (
|
404 |
+
output_attentions
|
405 |
+
if output_attentions is not None
|
406 |
+
else self.config.output_attentions
|
407 |
+
)
|
408 |
+
output_hidden_states = (
|
409 |
+
output_hidden_states
|
410 |
+
if output_hidden_states is not None
|
411 |
+
else self.config.output_hidden_states
|
412 |
+
)
|
413 |
+
return_dict = (
|
414 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
415 |
+
)
|
416 |
+
|
417 |
+
if pixel_values is None:
|
418 |
+
raise ValueError("You have to specify pixel_values")
|
419 |
+
|
420 |
+
hidden_states = self.embeddings(pixel_values)
|
421 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
422 |
+
|
423 |
+
encoder_outputs = self.encoder(
|
424 |
+
inputs_embeds=hidden_states,
|
425 |
+
output_attentions=output_attentions,
|
426 |
+
output_hidden_states=output_hidden_states,
|
427 |
+
return_dict=return_dict,
|
428 |
+
)
|
429 |
+
|
430 |
+
last_hidden_state = encoder_outputs[0]
|
431 |
+
pooled_output = last_hidden_state[:, 0, :]
|
432 |
+
pooled_output = self.post_layernorm(pooled_output)
|
433 |
+
|
434 |
+
if not return_dict:
|
435 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
436 |
+
|
437 |
+
return BaseModelOutputWithPooling(
|
438 |
+
last_hidden_state=last_hidden_state,
|
439 |
+
pooler_output=pooled_output,
|
440 |
+
hidden_states=encoder_outputs.hidden_states,
|
441 |
+
attentions=encoder_outputs.attentions,
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
@dataclass
|
446 |
+
class NLLBCLIPOutput(ModelOutput):
|
447 |
+
"""
|
448 |
+
Args:
|
449 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
450 |
+
Contrastive loss for image-text similarity.
|
451 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
452 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
453 |
+
similarity scores.
|
454 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
455 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
456 |
+
similarity scores.
|
457 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
458 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
459 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
460 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
461 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
462 |
+
The output of the [`CLIPTextModel`].
|
463 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
464 |
+
The output of the [`CLIPVisionModel`].
|
465 |
+
"""
|
466 |
+
|
467 |
+
loss: Optional[torch.FloatTensor] = None
|
468 |
+
logits_per_image: torch.FloatTensor = None
|
469 |
+
logits_per_text: torch.FloatTensor = None
|
470 |
+
text_embeds: torch.FloatTensor = None
|
471 |
+
image_embeds: torch.FloatTensor = None
|
472 |
+
text_model_output: BaseModelOutputWithPooling = None
|
473 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
474 |
+
|
475 |
+
def to_tuple(self) -> Tuple[Any]:
|
476 |
+
return tuple(
|
477 |
+
self[k]
|
478 |
+
if k not in ["text_model_output", "vision_model_output"]
|
479 |
+
else getattr(self, k).to_tuple()
|
480 |
+
for k in self.keys()
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
class M2M100Attention(nn.Module):
|
485 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
486 |
+
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
embed_dim: int,
|
490 |
+
num_heads: int,
|
491 |
+
dropout: float = 0.0,
|
492 |
+
is_decoder: bool = False,
|
493 |
+
bias: bool = True,
|
494 |
+
):
|
495 |
+
super().__init__()
|
496 |
+
self.embed_dim = embed_dim
|
497 |
+
self.num_heads = num_heads
|
498 |
+
self.dropout = dropout
|
499 |
+
self.head_dim = embed_dim // num_heads
|
500 |
+
|
501 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
502 |
+
raise ValueError(
|
503 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
504 |
+
f" and `num_heads`: {num_heads})."
|
505 |
+
)
|
506 |
+
self.scaling = self.head_dim**-0.5
|
507 |
+
self.is_decoder = is_decoder
|
508 |
+
|
509 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
510 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
511 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
512 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
513 |
+
|
514 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
515 |
+
return (
|
516 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
517 |
+
.transpose(1, 2)
|
518 |
+
.contiguous()
|
519 |
+
)
|
520 |
+
|
521 |
+
def forward(
|
522 |
+
self,
|
523 |
+
hidden_states: torch.Tensor,
|
524 |
+
key_value_states: Optional[torch.Tensor] = None,
|
525 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
526 |
+
attention_mask: Optional[torch.Tensor] = None,
|
527 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
528 |
+
output_attentions: bool = False,
|
529 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
530 |
+
"""Input shape: Batch x Time x Channel"""
|
531 |
+
|
532 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
533 |
+
# for the decoder
|
534 |
+
is_cross_attention = key_value_states is not None
|
535 |
+
|
536 |
+
bsz, tgt_len, _ = hidden_states.size()
|
537 |
+
|
538 |
+
# get query proj
|
539 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
540 |
+
# get key, value proj
|
541 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
542 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
543 |
+
# the provided `key_value_states` to support prefix tuning
|
544 |
+
if (
|
545 |
+
is_cross_attention
|
546 |
+
and past_key_value is not None
|
547 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
548 |
+
):
|
549 |
+
# reuse k,v, cross_attentions
|
550 |
+
key_states = past_key_value[0]
|
551 |
+
value_states = past_key_value[1]
|
552 |
+
elif is_cross_attention:
|
553 |
+
# cross_attentions
|
554 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
555 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
556 |
+
elif past_key_value is not None:
|
557 |
+
# reuse k, v, self_attention
|
558 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
559 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
560 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
561 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
562 |
+
else:
|
563 |
+
# self_attention
|
564 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
565 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
566 |
+
|
567 |
+
if self.is_decoder:
|
568 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
569 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
570 |
+
# key/value_states (first "if" case)
|
571 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
572 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
573 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
574 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
575 |
+
past_key_value = (key_states, value_states)
|
576 |
+
|
577 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
578 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
579 |
+
key_states = key_states.reshape(*proj_shape)
|
580 |
+
value_states = value_states.reshape(*proj_shape)
|
581 |
+
|
582 |
+
src_len = key_states.size(1)
|
583 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
584 |
+
|
585 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
586 |
+
raise ValueError(
|
587 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
588 |
+
f" {attn_weights.size()}"
|
589 |
+
)
|
590 |
+
|
591 |
+
if attention_mask is not None:
|
592 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
593 |
+
raise ValueError(
|
594 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
595 |
+
)
|
596 |
+
attn_weights = (
|
597 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
598 |
+
+ attention_mask
|
599 |
+
)
|
600 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
601 |
+
|
602 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
603 |
+
|
604 |
+
if layer_head_mask is not None:
|
605 |
+
if layer_head_mask.size() != (self.num_heads,):
|
606 |
+
raise ValueError(
|
607 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
608 |
+
f" {layer_head_mask.size()}"
|
609 |
+
)
|
610 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
|
611 |
+
bsz, self.num_heads, tgt_len, src_len
|
612 |
+
)
|
613 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
614 |
+
|
615 |
+
if output_attentions:
|
616 |
+
# this operation is a bit awkward, but it's required to
|
617 |
+
# make sure that attn_weights keeps its gradient.
|
618 |
+
# In order to do so, attn_weights have to be reshaped
|
619 |
+
# twice and have to be reused in the following
|
620 |
+
attn_weights_reshaped = attn_weights.view(
|
621 |
+
bsz, self.num_heads, tgt_len, src_len
|
622 |
+
)
|
623 |
+
attn_weights = attn_weights_reshaped.view(
|
624 |
+
bsz * self.num_heads, tgt_len, src_len
|
625 |
+
)
|
626 |
+
else:
|
627 |
+
attn_weights_reshaped = None
|
628 |
+
|
629 |
+
attn_probs = nn.functional.dropout(
|
630 |
+
attn_weights, p=self.dropout, training=self.training
|
631 |
+
)
|
632 |
+
|
633 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
634 |
+
|
635 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
636 |
+
raise ValueError(
|
637 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
638 |
+
f" {attn_output.size()}"
|
639 |
+
)
|
640 |
+
|
641 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
642 |
+
attn_output = attn_output.transpose(1, 2)
|
643 |
+
|
644 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
645 |
+
# partitioned across GPUs when using tensor-parallelism.
|
646 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
647 |
+
|
648 |
+
attn_output = self.out_proj(attn_output)
|
649 |
+
|
650 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
651 |
+
|
652 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->M2M100
|
653 |
+
|
654 |
+
|
655 |
+
class M2M100EncoderLayer(nn.Module):
|
656 |
+
def __init__(self, config: NLLBCLIPConfig):
|
657 |
+
super().__init__()
|
658 |
+
self.embed_dim = config.d_model
|
659 |
+
self.self_attn = M2M100Attention(
|
660 |
+
embed_dim=self.embed_dim,
|
661 |
+
num_heads=config.encoder_attention_heads,
|
662 |
+
dropout=config.attention_dropout,
|
663 |
+
)
|
664 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
665 |
+
self.dropout = config.dropout
|
666 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
667 |
+
self.activation_dropout = config.activation_dropout
|
668 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
669 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
670 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
671 |
+
|
672 |
+
def forward(
|
673 |
+
self,
|
674 |
+
hidden_states: torch.Tensor,
|
675 |
+
attention_mask: torch.Tensor,
|
676 |
+
layer_head_mask: torch.Tensor,
|
677 |
+
output_attentions: bool = False,
|
678 |
+
) -> torch.Tensor:
|
679 |
+
"""
|
680 |
+
Args:
|
681 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
682 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
683 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
684 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
685 |
+
`(encoder_attention_heads,)`.
|
686 |
+
output_attentions (`bool`, *optional*):
|
687 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
688 |
+
returned tensors for more detail.
|
689 |
+
"""
|
690 |
+
residual = hidden_states
|
691 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
692 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
693 |
+
hidden_states=hidden_states,
|
694 |
+
attention_mask=attention_mask,
|
695 |
+
layer_head_mask=layer_head_mask,
|
696 |
+
output_attentions=output_attentions,
|
697 |
+
)
|
698 |
+
hidden_states = nn.functional.dropout(
|
699 |
+
hidden_states, p=self.dropout, training=self.training
|
700 |
+
)
|
701 |
+
hidden_states = residual + hidden_states
|
702 |
+
|
703 |
+
residual = hidden_states
|
704 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
705 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
706 |
+
hidden_states = nn.functional.dropout(
|
707 |
+
hidden_states, p=self.activation_dropout, training=self.training
|
708 |
+
)
|
709 |
+
hidden_states = self.fc2(hidden_states)
|
710 |
+
hidden_states = nn.functional.dropout(
|
711 |
+
hidden_states, p=self.dropout, training=self.training
|
712 |
+
)
|
713 |
+
hidden_states = residual + hidden_states
|
714 |
+
|
715 |
+
if hidden_states.dtype == torch.float16 and (
|
716 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
717 |
+
):
|
718 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
719 |
+
hidden_states = torch.clamp(
|
720 |
+
hidden_states, min=-clamp_value, max=clamp_value
|
721 |
+
)
|
722 |
+
|
723 |
+
outputs = (hidden_states,)
|
724 |
+
|
725 |
+
if output_attentions:
|
726 |
+
outputs += (attn_weights,)
|
727 |
+
|
728 |
+
return outputs
|
729 |
+
|
730 |
+
|
731 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
732 |
+
"""
|
733 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
734 |
+
"""
|
735 |
+
bsz, src_len = mask.size()
|
736 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
737 |
+
|
738 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
739 |
+
|
740 |
+
inverted_mask = 1.0 - expanded_mask
|
741 |
+
|
742 |
+
return inverted_mask.masked_fill(
|
743 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
744 |
+
)
|
745 |
+
|
746 |
+
|
747 |
+
def create_position_ids_from_input_ids(
|
748 |
+
input_ids, padding_idx, past_key_values_length=0
|
749 |
+
):
|
750 |
+
"""
|
751 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
752 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
753 |
+
"""
|
754 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
755 |
+
mask = input_ids.ne(padding_idx).int()
|
756 |
+
incremental_indices = (
|
757 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
758 |
+
) * mask
|
759 |
+
return incremental_indices.long() + padding_idx
|
760 |
+
|
761 |
+
|
762 |
+
class M2M100SinusoidalPositionalEmbedding(nn.Module):
|
763 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
764 |
+
|
765 |
+
def __init__(
|
766 |
+
self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None
|
767 |
+
):
|
768 |
+
super().__init__()
|
769 |
+
self.offset = 2
|
770 |
+
self.embedding_dim = embedding_dim
|
771 |
+
self.padding_idx = padding_idx
|
772 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
773 |
+
|
774 |
+
def make_weights(
|
775 |
+
self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
|
776 |
+
):
|
777 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
778 |
+
if hasattr(self, "weights"):
|
779 |
+
# in forward put the weights on the correct dtype and device of the param
|
780 |
+
emb_weights = emb_weights.to(
|
781 |
+
dtype=self.weights.dtype, device=self.weights.device
|
782 |
+
)
|
783 |
+
|
784 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
785 |
+
|
786 |
+
@staticmethod
|
787 |
+
def get_embedding(
|
788 |
+
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
|
789 |
+
):
|
790 |
+
"""
|
791 |
+
Build sinusoidal embeddings.
|
792 |
+
|
793 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
794 |
+
"Attention Is All You Need".
|
795 |
+
"""
|
796 |
+
half_dim = embedding_dim // 2
|
797 |
+
emb = math.log(10000) / (half_dim - 1)
|
798 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
799 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(
|
800 |
+
1
|
801 |
+
) * emb.unsqueeze(0)
|
802 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(
|
803 |
+
num_embeddings, -1
|
804 |
+
)
|
805 |
+
if embedding_dim % 2 == 1:
|
806 |
+
# zero pad
|
807 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
808 |
+
if padding_idx is not None:
|
809 |
+
emb[padding_idx, :] = 0
|
810 |
+
|
811 |
+
return emb.to(torch.get_default_dtype())
|
812 |
+
|
813 |
+
@torch.no_grad()
|
814 |
+
def forward(
|
815 |
+
self,
|
816 |
+
input_ids: torch.Tensor = None,
|
817 |
+
inputs_embeds: torch.Tensor = None,
|
818 |
+
past_key_values_length: int = 0,
|
819 |
+
):
|
820 |
+
if input_ids is not None:
|
821 |
+
bsz, seq_len = input_ids.size()
|
822 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
823 |
+
position_ids = create_position_ids_from_input_ids(
|
824 |
+
input_ids, self.padding_idx, past_key_values_length
|
825 |
+
).to(input_ids.device)
|
826 |
+
else:
|
827 |
+
bsz, seq_len = inputs_embeds.size()[:-1]
|
828 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
829 |
+
inputs_embeds, past_key_values_length
|
830 |
+
)
|
831 |
+
|
832 |
+
# expand embeddings if needed
|
833 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
834 |
+
if max_pos > self.weights.size(0):
|
835 |
+
self.make_weights(
|
836 |
+
max_pos + self.offset, self.embedding_dim, self.padding_idx
|
837 |
+
)
|
838 |
+
|
839 |
+
return (
|
840 |
+
self.weights.index_select(0, position_ids.view(-1))
|
841 |
+
.view(bsz, seq_len, self.weights.shape[-1])
|
842 |
+
.detach()
|
843 |
+
)
|
844 |
+
|
845 |
+
def create_position_ids_from_inputs_embeds(
|
846 |
+
self, inputs_embeds, past_key_values_length
|
847 |
+
):
|
848 |
+
"""
|
849 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
850 |
+
|
851 |
+
Args:
|
852 |
+
inputs_embeds: torch.Tensor
|
853 |
+
|
854 |
+
Returns: torch.Tensor
|
855 |
+
"""
|
856 |
+
input_shape = inputs_embeds.size()[:-1]
|
857 |
+
sequence_length = input_shape[1]
|
858 |
+
|
859 |
+
position_ids = torch.arange(
|
860 |
+
self.padding_idx + 1,
|
861 |
+
sequence_length + self.padding_idx + 1,
|
862 |
+
dtype=torch.long,
|
863 |
+
device=inputs_embeds.device,
|
864 |
+
)
|
865 |
+
return (
|
866 |
+
position_ids.unsqueeze(0).expand(input_shape).contiguous()
|
867 |
+
+ past_key_values_length
|
868 |
+
)
|
869 |
+
|
870 |
+
|
871 |
+
class M2M100Encoder(PreTrainedModel):
|
872 |
+
"""
|
873 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
874 |
+
[`M2M100EncoderLayer`].
|
875 |
+
|
876 |
+
Args:
|
877 |
+
config: M2M100Config
|
878 |
+
embed_tokens (nn.Embedding): output embedding
|
879 |
+
"""
|
880 |
+
|
881 |
+
def __init__(
|
882 |
+
self, config: NLLBCLIPConfig, embed_tokens: Optional[nn.Embedding] = None
|
883 |
+
):
|
884 |
+
super().__init__(config)
|
885 |
+
|
886 |
+
self.dropout = config.dropout
|
887 |
+
self.layerdrop = config.encoder_layerdrop
|
888 |
+
|
889 |
+
embed_dim = config.d_model
|
890 |
+
self.padding_idx = config.pad_token_id
|
891 |
+
self.max_source_positions = config.max_position_embeddings
|
892 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
893 |
+
|
894 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
895 |
+
|
896 |
+
if embed_tokens is not None:
|
897 |
+
self.embed_tokens.weight = embed_tokens.weight
|
898 |
+
|
899 |
+
self.embed_positions = M2M100SinusoidalPositionalEmbedding(
|
900 |
+
config.max_position_embeddings,
|
901 |
+
embed_dim,
|
902 |
+
self.padding_idx,
|
903 |
+
)
|
904 |
+
self.layers = nn.ModuleList(
|
905 |
+
[M2M100EncoderLayer(config) for _ in range(config.encoder_layers)]
|
906 |
+
)
|
907 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
908 |
+
|
909 |
+
self.gradient_checkpointing = False
|
910 |
+
# Initialize weights and apply final processing
|
911 |
+
self.post_init()
|
912 |
+
|
913 |
+
def forward(
|
914 |
+
self,
|
915 |
+
input_ids: Optional[torch.Tensor] = None,
|
916 |
+
attention_mask: Optional[torch.Tensor] = None,
|
917 |
+
head_mask: Optional[torch.Tensor] = None,
|
918 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
919 |
+
output_attentions: Optional[bool] = None,
|
920 |
+
output_hidden_states: Optional[bool] = None,
|
921 |
+
return_dict: Optional[bool] = None,
|
922 |
+
):
|
923 |
+
r"""
|
924 |
+
Args:
|
925 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
926 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
927 |
+
provide it.
|
928 |
+
|
929 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
930 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
931 |
+
|
932 |
+
[What are input IDs?](../glossary#input-ids)
|
933 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
934 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
935 |
+
|
936 |
+
- 1 for tokens that are **not masked**,
|
937 |
+
- 0 for tokens that are **masked**.
|
938 |
+
|
939 |
+
[What are attention masks?](../glossary#attention-mask)
|
940 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
941 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
942 |
+
|
943 |
+
- 1 indicates the head is **not masked**,
|
944 |
+
- 0 indicates the head is **masked**.
|
945 |
+
|
946 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
947 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
948 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
949 |
+
than the model's internal embedding lookup matrix.
|
950 |
+
output_attentions (`bool`, *optional*):
|
951 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
952 |
+
returned tensors for more detail.
|
953 |
+
output_hidden_states (`bool`, *optional*):
|
954 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
955 |
+
for more detail.
|
956 |
+
return_dict (`bool`, *optional*):
|
957 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
958 |
+
"""
|
959 |
+
output_attentions = (
|
960 |
+
output_attentions
|
961 |
+
if output_attentions is not None
|
962 |
+
else self.config.output_attentions
|
963 |
+
)
|
964 |
+
output_hidden_states = (
|
965 |
+
output_hidden_states
|
966 |
+
if output_hidden_states is not None
|
967 |
+
else self.config.output_hidden_states
|
968 |
+
)
|
969 |
+
return_dict = (
|
970 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
971 |
+
)
|
972 |
+
|
973 |
+
# retrieve input_ids and inputs_embeds
|
974 |
+
if input_ids is not None and inputs_embeds is not None:
|
975 |
+
raise ValueError(
|
976 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
977 |
+
)
|
978 |
+
elif input_ids is not None:
|
979 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
980 |
+
input_shape = input_ids.size()
|
981 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
982 |
+
elif inputs_embeds is not None:
|
983 |
+
input_shape = inputs_embeds.size()[:-1]
|
984 |
+
else:
|
985 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
986 |
+
|
987 |
+
if inputs_embeds is None:
|
988 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
989 |
+
|
990 |
+
embed_pos = self.embed_positions(input_ids, inputs_embeds)
|
991 |
+
embed_pos = embed_pos.to(inputs_embeds.device)
|
992 |
+
|
993 |
+
hidden_states = inputs_embeds + embed_pos
|
994 |
+
hidden_states = nn.functional.dropout(
|
995 |
+
hidden_states, p=self.dropout, training=self.training
|
996 |
+
)
|
997 |
+
|
998 |
+
# expand attention_mask
|
999 |
+
if attention_mask is not None:
|
1000 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1001 |
+
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
|
1002 |
+
|
1003 |
+
encoder_states = () if output_hidden_states else None
|
1004 |
+
all_attentions = () if output_attentions else None
|
1005 |
+
|
1006 |
+
# check if head_mask has a correct number of layers specified if desired
|
1007 |
+
if head_mask is not None:
|
1008 |
+
if head_mask.size()[0] != len(self.layers):
|
1009 |
+
raise ValueError(
|
1010 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
1011 |
+
f" {head_mask.size()[0]}."
|
1012 |
+
)
|
1013 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
1014 |
+
|
1015 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1016 |
+
if output_hidden_states:
|
1017 |
+
encoder_states = encoder_states + (hidden_states,)
|
1018 |
+
|
1019 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1020 |
+
dropout_probability = torch.rand([])
|
1021 |
+
|
1022 |
+
skip_the_layer = (
|
1023 |
+
True
|
1024 |
+
if self.training and (dropout_probability < self.layerdrop)
|
1025 |
+
else False
|
1026 |
+
)
|
1027 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
1028 |
+
# under deepspeed zero3 all gpus must run in sync
|
1029 |
+
|
1030 |
+
if self.gradient_checkpointing and self.training:
|
1031 |
+
# create gradient checkpointing function
|
1032 |
+
def create_custom_forward(module):
|
1033 |
+
def custom_forward(*inputs):
|
1034 |
+
return module(*inputs, output_attentions)
|
1035 |
+
|
1036 |
+
return custom_forward
|
1037 |
+
|
1038 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1039 |
+
create_custom_forward(encoder_layer),
|
1040 |
+
hidden_states,
|
1041 |
+
attention_mask,
|
1042 |
+
(head_mask[idx] if head_mask is not None else None),
|
1043 |
+
)
|
1044 |
+
else:
|
1045 |
+
layer_outputs = encoder_layer(
|
1046 |
+
hidden_states,
|
1047 |
+
attention_mask,
|
1048 |
+
layer_head_mask=(
|
1049 |
+
head_mask[idx] if head_mask is not None else None
|
1050 |
+
),
|
1051 |
+
output_attentions=output_attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
hidden_states = layer_outputs[0]
|
1055 |
+
|
1056 |
+
if skip_the_layer:
|
1057 |
+
layer_outputs = (None, None)
|
1058 |
+
|
1059 |
+
if output_attentions:
|
1060 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1061 |
+
|
1062 |
+
hidden_states = self.layer_norm(hidden_states)
|
1063 |
+
|
1064 |
+
if output_hidden_states:
|
1065 |
+
encoder_states = encoder_states + (hidden_states,)
|
1066 |
+
|
1067 |
+
if not return_dict:
|
1068 |
+
return tuple(
|
1069 |
+
v
|
1070 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
1071 |
+
if v is not None
|
1072 |
+
)
|
1073 |
+
return BaseModelOutput(
|
1074 |
+
last_hidden_state=hidden_states,
|
1075 |
+
hidden_states=encoder_states,
|
1076 |
+
attentions=all_attentions,
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
|
1080 |
+
class CLIPTextTransformer(nn.Module):
|
1081 |
+
def __init__(self, config: NLLBCLIPTextConfig):
|
1082 |
+
super().__init__()
|
1083 |
+
self.config = config
|
1084 |
+
embed_dim = config.hidden_size
|
1085 |
+
self.encoder = M2M100Encoder(config)
|
1086 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1087 |
+
|
1088 |
+
# For `pooled_output` computation
|
1089 |
+
self.eos_token_id = config.eos_token_id
|
1090 |
+
|
1091 |
+
def forward(
|
1092 |
+
self,
|
1093 |
+
input_ids: Optional[torch.Tensor] = None,
|
1094 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1095 |
+
output_attentions: Optional[bool] = None,
|
1096 |
+
output_hidden_states: Optional[bool] = None,
|
1097 |
+
return_dict: Optional[bool] = None,
|
1098 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1099 |
+
r"""
|
1100 |
+
Returns:
|
1101 |
+
|
1102 |
+
"""
|
1103 |
+
output_attentions = (
|
1104 |
+
output_attentions
|
1105 |
+
if output_attentions is not None
|
1106 |
+
else self.config.output_attentions
|
1107 |
+
)
|
1108 |
+
output_hidden_states = (
|
1109 |
+
output_hidden_states
|
1110 |
+
if output_hidden_states is not None
|
1111 |
+
else self.config.output_hidden_states
|
1112 |
+
)
|
1113 |
+
return_dict = (
|
1114 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
if input_ids is None:
|
1118 |
+
raise ValueError("You have to specify input_ids")
|
1119 |
+
|
1120 |
+
input_shape = input_ids.size()
|
1121 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1122 |
+
|
1123 |
+
encoder_outputs = self.encoder(
|
1124 |
+
input_ids=input_ids,
|
1125 |
+
attention_mask=attention_mask,
|
1126 |
+
output_attentions=output_attentions,
|
1127 |
+
output_hidden_states=output_hidden_states,
|
1128 |
+
return_dict=return_dict,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
last_hidden_state = encoder_outputs[0]
|
1132 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
1133 |
+
|
1134 |
+
pooled_output = last_hidden_state[
|
1135 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
1136 |
+
0,
|
1137 |
+
]
|
1138 |
+
|
1139 |
+
if not return_dict:
|
1140 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1141 |
+
|
1142 |
+
return BaseModelOutputWithPooling(
|
1143 |
+
last_hidden_state=last_hidden_state,
|
1144 |
+
pooler_output=pooled_output,
|
1145 |
+
hidden_states=encoder_outputs.hidden_states,
|
1146 |
+
attentions=encoder_outputs.attentions,
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
|
1150 |
+
class NLLBCLIPModel(PreTrainedModel):
|
1151 |
+
config_class = NLLBCLIPConfig
|
1152 |
+
|
1153 |
+
def __init__(self, config: NLLBCLIPConfig):
|
1154 |
+
super().__init__(config)
|
1155 |
+
|
1156 |
+
if not isinstance(config.text_config, NLLBCLIPTextConfig):
|
1157 |
+
raise ValueError(
|
1158 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
1159 |
+
f" {type(config.text_config)}."
|
1160 |
+
)
|
1161 |
+
|
1162 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
1163 |
+
raise ValueError(
|
1164 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
1165 |
+
f" {type(config.vision_config)}."
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
text_config = config.text_config
|
1169 |
+
vision_config = config.vision_config
|
1170 |
+
|
1171 |
+
self.projection_dim = config.projection_dim
|
1172 |
+
self.text_embed_dim = text_config.hidden_size
|
1173 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1174 |
+
|
1175 |
+
self.text_model = CLIPTextTransformer(text_config)
|
1176 |
+
self.vision_model = CLIPVisionTransformer(vision_config)
|
1177 |
+
|
1178 |
+
self.visual_projection = nn.Linear(
|
1179 |
+
self.vision_embed_dim, self.projection_dim, bias=False
|
1180 |
+
)
|
1181 |
+
self.text_projection = nn.Linear(
|
1182 |
+
self.text_embed_dim, self.projection_dim, bias=False
|
1183 |
+
)
|
1184 |
+
self.logit_scale = nn.Parameter(
|
1185 |
+
torch.tensor(self.config.logit_scale_init_value)
|
1186 |
+
)
|
1187 |
+
|
1188 |
+
# Initialize weights and apply final processing
|
1189 |
+
self.post_init()
|
1190 |
+
|
1191 |
+
def get_text_features(
|
1192 |
+
self,
|
1193 |
+
input_ids: Optional[torch.Tensor] = None,
|
1194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1195 |
+
position_ids: Optional[torch.Tensor] = None,
|
1196 |
+
output_attentions: Optional[bool] = None,
|
1197 |
+
output_hidden_states: Optional[bool] = None,
|
1198 |
+
return_dict: Optional[bool] = None,
|
1199 |
+
) -> torch.FloatTensor:
|
1200 |
+
r"""
|
1201 |
+
Returns:
|
1202 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1203 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
1204 |
+
|
1205 |
+
Examples:
|
1206 |
+
|
1207 |
+
```python
|
1208 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
1209 |
+
|
1210 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1211 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1212 |
+
|
1213 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1214 |
+
>>> text_features = model.get_text_features(**inputs)
|
1215 |
+
```"""
|
1216 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1217 |
+
output_attentions = (
|
1218 |
+
output_attentions
|
1219 |
+
if output_attentions is not None
|
1220 |
+
else self.config.output_attentions
|
1221 |
+
)
|
1222 |
+
output_hidden_states = (
|
1223 |
+
output_hidden_states
|
1224 |
+
if output_hidden_states is not None
|
1225 |
+
else self.config.output_hidden_states
|
1226 |
+
)
|
1227 |
+
return_dict = (
|
1228 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1229 |
+
)
|
1230 |
+
|
1231 |
+
text_outputs = self.text_model(
|
1232 |
+
input_ids=input_ids,
|
1233 |
+
attention_mask=attention_mask,
|
1234 |
+
position_ids=position_ids,
|
1235 |
+
output_attentions=output_attentions,
|
1236 |
+
output_hidden_states=output_hidden_states,
|
1237 |
+
return_dict=return_dict,
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
pooled_output = text_outputs[1]
|
1241 |
+
text_features = self.text_projection(pooled_output)
|
1242 |
+
|
1243 |
+
return text_features
|
1244 |
+
|
1245 |
+
def get_image_features(
|
1246 |
+
self,
|
1247 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1248 |
+
output_attentions: Optional[bool] = None,
|
1249 |
+
output_hidden_states: Optional[bool] = None,
|
1250 |
+
return_dict: Optional[bool] = None,
|
1251 |
+
) -> torch.FloatTensor:
|
1252 |
+
r"""
|
1253 |
+
Returns:
|
1254 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1255 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
1256 |
+
|
1257 |
+
Examples:
|
1258 |
+
|
1259 |
+
```python
|
1260 |
+
>>> from PIL import Image
|
1261 |
+
>>> import requests
|
1262 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1263 |
+
|
1264 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1265 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1266 |
+
|
1267 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1268 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1269 |
+
|
1270 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1271 |
+
|
1272 |
+
>>> image_features = model.get_image_features(**inputs)
|
1273 |
+
```"""
|
1274 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1275 |
+
output_attentions = (
|
1276 |
+
output_attentions
|
1277 |
+
if output_attentions is not None
|
1278 |
+
else self.config.output_attentions
|
1279 |
+
)
|
1280 |
+
output_hidden_states = (
|
1281 |
+
output_hidden_states
|
1282 |
+
if output_hidden_states is not None
|
1283 |
+
else self.config.output_hidden_states
|
1284 |
+
)
|
1285 |
+
return_dict = (
|
1286 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1287 |
+
)
|
1288 |
+
|
1289 |
+
vision_outputs = self.vision_model(
|
1290 |
+
pixel_values=pixel_values,
|
1291 |
+
output_attentions=output_attentions,
|
1292 |
+
output_hidden_states=output_hidden_states,
|
1293 |
+
return_dict=return_dict,
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1297 |
+
image_features = self.visual_projection(pooled_output)
|
1298 |
+
|
1299 |
+
return image_features
|
1300 |
+
|
1301 |
+
def forward(
|
1302 |
+
self,
|
1303 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1304 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1305 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1306 |
+
return_loss: Optional[bool] = None,
|
1307 |
+
output_attentions: Optional[bool] = None,
|
1308 |
+
output_hidden_states: Optional[bool] = None,
|
1309 |
+
return_dict: Optional[bool] = None,
|
1310 |
+
) -> Union[Tuple, NLLBCLIPOutput]:
|
1311 |
+
r"""
|
1312 |
+
Returns:
|
1313 |
+
|
1314 |
+
Examples:
|
1315 |
+
|
1316 |
+
```python
|
1317 |
+
>>> from PIL import Image
|
1318 |
+
>>> import requests
|
1319 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1320 |
+
|
1321 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1322 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1323 |
+
|
1324 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1325 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1326 |
+
|
1327 |
+
>>> inputs = processor(
|
1328 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1329 |
+
... )
|
1330 |
+
|
1331 |
+
>>> outputs = model(**inputs)
|
1332 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1333 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1334 |
+
```"""
|
1335 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1336 |
+
output_attentions = (
|
1337 |
+
output_attentions
|
1338 |
+
if output_attentions is not None
|
1339 |
+
else self.config.output_attentions
|
1340 |
+
)
|
1341 |
+
output_hidden_states = (
|
1342 |
+
output_hidden_states
|
1343 |
+
if output_hidden_states is not None
|
1344 |
+
else self.config.output_hidden_states
|
1345 |
+
)
|
1346 |
+
return_dict = (
|
1347 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
vision_outputs = self.vision_model(
|
1351 |
+
pixel_values=pixel_values,
|
1352 |
+
output_attentions=output_attentions,
|
1353 |
+
output_hidden_states=output_hidden_states,
|
1354 |
+
return_dict=return_dict,
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
text_outputs = self.text_model(
|
1358 |
+
input_ids=input_ids,
|
1359 |
+
attention_mask=attention_mask,
|
1360 |
+
output_attentions=output_attentions,
|
1361 |
+
output_hidden_states=output_hidden_states,
|
1362 |
+
return_dict=return_dict,
|
1363 |
+
)
|
1364 |
+
|
1365 |
+
image_embeds = vision_outputs[1]
|
1366 |
+
image_embeds = self.visual_projection(image_embeds)
|
1367 |
+
|
1368 |
+
text_embeds = text_outputs[1]
|
1369 |
+
text_embeds = self.text_projection(text_embeds)
|
1370 |
+
|
1371 |
+
# normalized features
|
1372 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1373 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1374 |
+
|
1375 |
+
# cosine similarity as logits
|
1376 |
+
logit_scale = self.logit_scale.exp()
|
1377 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1378 |
+
logits_per_image = logits_per_text.t()
|
1379 |
+
|
1380 |
+
loss = None
|
1381 |
+
if return_loss:
|
1382 |
+
loss = clip_loss(logits_per_text)
|
1383 |
+
|
1384 |
+
if not return_dict:
|
1385 |
+
output = (
|
1386 |
+
logits_per_image,
|
1387 |
+
logits_per_text,
|
1388 |
+
text_embeds,
|
1389 |
+
image_embeds,
|
1390 |
+
text_outputs,
|
1391 |
+
vision_outputs,
|
1392 |
+
)
|
1393 |
+
return ((loss,) + output) if loss is not None else output
|
1394 |
+
|
1395 |
+
return NLLBCLIPOutput(
|
1396 |
+
loss=loss,
|
1397 |
+
logits_per_image=logits_per_image,
|
1398 |
+
logits_per_text=logits_per_text,
|
1399 |
+
text_embeds=text_embeds,
|
1400 |
+
image_embeds=image_embeds,
|
1401 |
+
text_model_output=text_outputs,
|
1402 |
+
vision_model_output=vision_outputs,
|
1403 |
+
)
|