|
import functools |
|
from pathlib import Path |
|
|
|
import yaml |
|
|
|
|
|
def load_preset(name): |
|
generate_params = { |
|
'do_sample': True, |
|
'temperature': 1, |
|
'top_p': 1, |
|
'typical_p': 1, |
|
'epsilon_cutoff': 0, |
|
'eta_cutoff': 0, |
|
'tfs': 1, |
|
'top_a': 0, |
|
'repetition_penalty': 1, |
|
'repetition_penalty_range': 0, |
|
'encoder_repetition_penalty': 1, |
|
'top_k': 0, |
|
'num_beams': 1, |
|
'penalty_alpha': 0, |
|
'min_length': 0, |
|
'length_penalty': 1, |
|
'no_repeat_ngram_size': 0, |
|
'early_stopping': False, |
|
'mirostat_mode': 0, |
|
'mirostat_tau': 5.0, |
|
'mirostat_eta': 0.1, |
|
} |
|
|
|
if name not in ['None', None, '']: |
|
with open(Path(f'presets/{name}.yaml'), 'r') as infile: |
|
preset = yaml.safe_load(infile) |
|
|
|
for k in preset: |
|
generate_params[k] = preset[k] |
|
|
|
generate_params['temperature'] = min(1.99, generate_params['temperature']) |
|
return generate_params |
|
|
|
|
|
@functools.cache |
|
def load_preset_memoized(name): |
|
return load_preset(name) |
|
|
|
|
|
def load_preset_for_ui(name, state): |
|
generate_params = load_preset(name) |
|
state.update(generate_params) |
|
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']] |
|
|
|
|
|
def generate_preset_yaml(state): |
|
data = {k: state[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']} |
|
return yaml.dump(data, sort_keys=False) |
|
|