|
from pathlib import Path |
|
|
|
from torch import version as torch_version |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
from modules.text_generation import get_max_prompt_length |
|
|
|
try: |
|
from exllama.generator import ExLlamaGenerator |
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig |
|
from exllama.tokenizer import ExLlamaTokenizer |
|
except: |
|
logger.warning('Exllama module failed to load. Will attempt to load from repositories.') |
|
try: |
|
from modules.relative_imports import RelativeImport |
|
|
|
with RelativeImport("repositories/exllama"): |
|
from generator import ExLlamaGenerator |
|
from model import ExLlama, ExLlamaCache, ExLlamaConfig |
|
from tokenizer import ExLlamaTokenizer |
|
except: |
|
logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.") |
|
raise |
|
|
|
|
|
class ExllamaModel: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def from_pretrained(self, path_to_model): |
|
|
|
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) |
|
tokenizer_model_path = path_to_model / "tokenizer.model" |
|
model_config_path = path_to_model / "config.json" |
|
|
|
|
|
model_path = None |
|
for ext in ['.safetensors', '.pt', '.bin']: |
|
found = list(path_to_model.glob(f"*{ext}")) |
|
if len(found) > 0: |
|
if len(found) > 1: |
|
logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') |
|
|
|
model_path = found[-1] |
|
break |
|
|
|
config = ExLlamaConfig(str(model_config_path)) |
|
config.model_path = str(model_path) |
|
config.max_seq_len = shared.args.max_seq_len |
|
config.compress_pos_emb = shared.args.compress_pos_emb |
|
if shared.args.gpu_split: |
|
config.set_auto_map(shared.args.gpu_split) |
|
config.gpu_peer_fix = True |
|
|
|
if shared.args.alpha_value: |
|
config.alpha_value = shared.args.alpha_value |
|
config.calculate_rotary_embedding_base() |
|
|
|
if torch_version.hip: |
|
config.rmsnorm_no_half2 = True |
|
config.rope_no_half2 = True |
|
config.matmul_no_half2 = True |
|
config.silu_no_half2 = True |
|
|
|
model = ExLlama(config) |
|
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path)) |
|
cache = ExLlamaCache(model) |
|
generator = ExLlamaGenerator(model, tokenizer, cache) |
|
|
|
result = self() |
|
result.config = config |
|
result.model = model |
|
result.cache = cache |
|
result.tokenizer = tokenizer |
|
result.generator = generator |
|
return result, result |
|
|
|
def generate_with_streaming(self, prompt, state): |
|
self.generator.settings.temperature = state['temperature'] |
|
self.generator.settings.top_p = state['top_p'] |
|
self.generator.settings.top_k = state['top_k'] |
|
self.generator.settings.typical = state['typical_p'] |
|
self.generator.settings.token_repetition_penalty_max = state['repetition_penalty'] |
|
self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] |
|
if state['ban_eos_token']: |
|
self.generator.disallow_tokens([self.tokenizer.eos_token_id]) |
|
else: |
|
self.generator.disallow_tokens(None) |
|
|
|
self.generator.end_beam_search() |
|
|
|
|
|
ids = self.generator.tokenizer.encode(prompt) |
|
ids = ids[:, -get_max_prompt_length(state):] |
|
|
|
self.generator.gen_begin_reuse(ids) |
|
initial_len = self.generator.sequence[0].shape[0] |
|
has_leading_space = False |
|
for i in range(state['max_new_tokens']): |
|
token = self.generator.gen_single_token() |
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): |
|
has_leading_space = True |
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) |
|
if has_leading_space: |
|
decoded_text = ' ' + decoded_text |
|
|
|
yield decoded_text |
|
if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything: |
|
break |
|
|
|
def generate(self, prompt, state): |
|
output = '' |
|
for output in self.generate_with_streaming(prompt, state): |
|
pass |
|
|
|
return output |
|
|
|
def encode(self, string, **kwargs): |
|
return self.tokenizer.encode(string) |
|
|
|
def decode(self, string, **kwargs): |
|
return self.tokenizer.decode(string)[0] |
|
|