|
import base64 |
|
import re |
|
import time |
|
from functools import partial |
|
from io import BytesIO |
|
|
|
import gradio as gr |
|
import torch |
|
|
|
from extensions.multimodal.multimodal_embedder import MultimodalEmbedder |
|
from modules import shared |
|
from modules.logging_colors import logger |
|
|
|
params = { |
|
"add_all_images_to_prompt": False, |
|
|
|
"vision_device": None, |
|
|
|
"vision_bits": 32, |
|
|
|
"projector_device": None, |
|
|
|
"projector_bits": 32 |
|
} |
|
|
|
|
|
|
|
input_hijack = { |
|
'state': False, |
|
'value': ["", ""] |
|
} |
|
|
|
|
|
|
|
multimodal_embedder: MultimodalEmbedder = None |
|
|
|
|
|
def add_chat_picture(picture, text, visible_text): |
|
|
|
max_hw, min_hw = max(picture.size), min(picture.size) |
|
aspect_ratio = max_hw / min_hw |
|
shortest_edge = int(max(300 / aspect_ratio, 224)) |
|
longest_edge = int(shortest_edge * aspect_ratio) |
|
w = shortest_edge if picture.width < picture.height else longest_edge |
|
h = shortest_edge if picture.width >= picture.height else longest_edge |
|
picture = picture.resize((w, h)) |
|
|
|
buffer = BytesIO() |
|
picture.save(buffer, format="JPEG") |
|
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') |
|
image = f'<img src="data:image/jpeg;base64,{img_str}">' |
|
|
|
if '<image>' in text: |
|
text = text.replace('<image>', image) |
|
else: |
|
text = text + '\n' + image |
|
|
|
if visible_text == '' or visible_text is None: |
|
visible_text = text |
|
elif '<image>' in visible_text: |
|
visible_text = visible_text.replace('<image>', image) |
|
else: |
|
visible_text = visible_text + '\n' + image |
|
|
|
return text, visible_text |
|
|
|
|
|
def custom_tokenized_length(prompt): |
|
return multimodal_embedder.len_in_tokens(prompt) |
|
|
|
|
|
def tokenizer_modifier(state, prompt, input_ids, input_embeds): |
|
global params |
|
start_ts = time.time() |
|
image_match = re.search(r'<img src="data:image/jpeg;base64,[A-Za-z0-9+/=]+">', prompt) |
|
|
|
if image_match is None: |
|
return prompt, input_ids, input_embeds |
|
|
|
prompt, input_ids, input_embeds, total_embedded = multimodal_embedder.forward(prompt, state, params) |
|
logger.info(f'Embedded {total_embedded} image(s) in {time.time()-start_ts:.2f}s') |
|
return (prompt, |
|
input_ids.unsqueeze(0).to(shared.model.device, dtype=torch.int64), |
|
input_embeds.unsqueeze(0).to(shared.model.device, dtype=shared.model.dtype)) |
|
|
|
|
|
def ui(): |
|
global multimodal_embedder |
|
multimodal_embedder = MultimodalEmbedder(params) |
|
with gr.Column(): |
|
picture_select = gr.Image(label='Send a picture', type='pil') |
|
|
|
single_image_checkbox = gr.Checkbox(False, label='Embed all images, not only the last one') |
|
|
|
picture_select.upload( |
|
lambda picture: input_hijack.update({"state": True, "value": partial(add_chat_picture, picture)}), |
|
[picture_select], |
|
None |
|
) |
|
picture_select.clear(lambda: input_hijack.update({"state": False, "value": ["", ""]}), None, None) |
|
single_image_checkbox.change(lambda x: params.update({"add_all_images_to_prompt": x}), single_image_checkbox, None) |
|
shared.gradio['Generate'].click(lambda: None, None, picture_select) |
|
shared.gradio['textbox'].submit(lambda: None, None, picture_select) |
|
|