|
import os |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional, Union |
|
|
|
import torch |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from modules import shared |
|
from modules.logging_colors import logger |
|
|
|
if torch.cuda.is_available(): |
|
from llama_cpp_cuda import Llama |
|
else: |
|
from llama_cpp import Llama |
|
|
|
class LlamacppHF(PreTrainedModel): |
|
def __init__(self, model): |
|
super().__init__(PretrainedConfig()) |
|
self.model = model |
|
self.generation_config = GenerationConfig() |
|
self.cache = None |
|
|
|
def _validate_model_class(self): |
|
pass |
|
|
|
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): |
|
pass |
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
return {'input_ids': input_ids, **kwargs} |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return torch.device(0) |
|
|
|
def __call__(self, *args, **kwargs): |
|
|
|
assert len(args) == 0, 'no *args should be passed to forward' |
|
use_cache = kwargs.get('use_cache', True) |
|
labels = kwargs.get('labels', None) |
|
seq = kwargs['input_ids'][0].tolist() |
|
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None |
|
|
|
|
|
seq_tensor = torch.tensor(seq) |
|
if labels is None: |
|
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]): |
|
self.model.reset() |
|
self.model.eval(seq) |
|
else: |
|
self.model.eval([seq[-1]]) |
|
|
|
logits = torch.tensor(self.model.eval_logits[-1]).view(1, 1, -1).to(kwargs['input_ids'].device) |
|
else: |
|
self.model.reset() |
|
self.model.eval(seq) |
|
logits = torch.tensor(self.model.eval_logits) |
|
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(kwargs['input_ids'].device) |
|
|
|
self.cache = seq_tensor |
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, logits.shape[-1]) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): |
|
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" |
|
if isinstance(pretrained_model_name_or_path, str): |
|
pretrained_model_name_or_path = Path(pretrained_model_name_or_path) |
|
|
|
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
model_file = list(path.glob('*ggml*.bin'))[0] |
|
|
|
logger.info(f"llama.cpp weights detected: {model_file}\n") |
|
params = { |
|
'model_path': str(model_file), |
|
'n_ctx': shared.args.n_ctx, |
|
'seed': int(shared.args.llama_cpp_seed), |
|
'n_threads': shared.args.threads or None, |
|
'n_batch': shared.args.n_batch, |
|
'use_mmap': not shared.args.no_mmap, |
|
'use_mlock': shared.args.mlock, |
|
'low_vram': shared.args.low_vram, |
|
'n_gpu_layers': shared.args.n_gpu_layers, |
|
'rope_freq_base': 10000 * shared.args.alpha_value ** (64/63.), |
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb, |
|
'logits_all': True, |
|
} |
|
|
|
model = Llama(**params) |
|
return LlamacppHF(model) |
|
|