|
import ast |
|
import copy |
|
import random |
|
import re |
|
import time |
|
import traceback |
|
|
|
import numpy as np |
|
import torch |
|
import transformers |
|
from transformers import LogitsProcessorList |
|
|
|
import modules.shared as shared |
|
from modules.callbacks import ( |
|
Iteratorize, |
|
Stream, |
|
_StopEverythingStoppingCriteria |
|
) |
|
from modules.extensions import apply_extensions |
|
from modules.html_generator import generate_4chan_html, generate_basic_html |
|
from modules.logging_colors import logger |
|
from modules.models import clear_torch_cache, local_rank |
|
|
|
|
|
def generate_reply(*args, **kwargs): |
|
shared.generation_lock.acquire() |
|
try: |
|
for result in _generate_reply(*args, **kwargs): |
|
yield result |
|
finally: |
|
shared.generation_lock.release() |
|
|
|
|
|
def get_max_prompt_length(state): |
|
return state['truncation_length'] - state['max_new_tokens'] |
|
|
|
|
|
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None): |
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel']: |
|
input_ids = shared.tokenizer.encode(str(prompt)) |
|
input_ids = np.array(input_ids).reshape(1, len(input_ids)) |
|
return input_ids |
|
else: |
|
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) |
|
|
|
|
|
if not add_bos_token and input_ids[0][0] == shared.tokenizer.bos_token_id: |
|
input_ids = input_ids[:, 1:] |
|
|
|
|
|
if truncation_length is not None: |
|
input_ids = input_ids[:, -truncation_length:] |
|
|
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel'] or shared.args.cpu: |
|
return input_ids |
|
elif shared.args.flexgen: |
|
return input_ids.numpy() |
|
elif shared.args.deepspeed: |
|
return input_ids.to(device=local_rank) |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
return input_ids.to(device) |
|
else: |
|
return input_ids.cuda() |
|
|
|
|
|
def get_encoded_length(prompt): |
|
length_after_extensions = apply_extensions('tokenized_length', prompt) |
|
if length_after_extensions is not None: |
|
return length_after_extensions |
|
|
|
return len(encode(prompt)[0]) |
|
|
|
|
|
def decode(output_ids, skip_special_tokens=True): |
|
return shared.tokenizer.decode(output_ids, skip_special_tokens) |
|
|
|
|
|
|
|
def fix_gpt4chan(s): |
|
for i in range(10): |
|
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n *\n---", "---", s) |
|
s = re.sub("--- [0-9]*\n\n\n---", "---", s) |
|
|
|
return s |
|
|
|
|
|
|
|
def fix_galactica(s): |
|
s = s.replace(r'\[', r'$') |
|
s = s.replace(r'\]', r'$') |
|
s = s.replace(r'\(', r'$') |
|
s = s.replace(r'\)', r'$') |
|
s = s.replace(r'$$', r'$') |
|
s = re.sub(r'\n', r'\n\n', s) |
|
s = re.sub(r"\n{3,}", "\n\n", s) |
|
return s |
|
|
|
|
|
def get_reply_from_output_ids(output_ids, input_ids, original_question, state, is_chat=False): |
|
if shared.is_seq2seq: |
|
reply = decode(output_ids, state['skip_special_tokens']) |
|
else: |
|
new_tokens = len(output_ids) - len(input_ids[0]) |
|
reply = decode(output_ids[-new_tokens:], state['skip_special_tokens']) |
|
|
|
if type(shared.tokenizer) in [transformers.LlamaTokenizer, transformers.LlamaTokenizerFast] and len(output_ids) > 0: |
|
if shared.tokenizer.convert_ids_to_tokens(int(output_ids[-new_tokens])).startswith('▁'): |
|
reply = ' ' + reply |
|
|
|
return reply |
|
|
|
|
|
def formatted_outputs(reply, model_name): |
|
if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']): |
|
reply = fix_gpt4chan(reply) |
|
return reply, generate_4chan_html(reply) |
|
else: |
|
return reply, generate_basic_html(reply) |
|
|
|
|
|
def set_manual_seed(seed): |
|
seed = int(seed) |
|
if seed == -1: |
|
seed = random.randint(1, 2**31) |
|
|
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
return seed |
|
|
|
|
|
def stop_everything_event(): |
|
shared.stop_everything = True |
|
|
|
|
|
def generate_reply_wrapper(question, state, stopping_strings=None): |
|
reply = question if not shared.is_seq2seq else '' |
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
for reply in generate_reply(question, state, stopping_strings, is_chat=False): |
|
if not shared.is_seq2seq: |
|
reply = question + reply |
|
|
|
yield formatted_outputs(reply, shared.model_name) |
|
|
|
|
|
def apply_stopping_strings(reply, all_stop_strings): |
|
stop_found = False |
|
for string in all_stop_strings: |
|
idx = reply.find(string) |
|
if idx != -1: |
|
reply = reply[:idx] |
|
stop_found = True |
|
break |
|
|
|
if not stop_found: |
|
|
|
|
|
for string in all_stop_strings: |
|
for j in range(len(string) - 1, 0, -1): |
|
if reply[-j:] == string[:j]: |
|
reply = reply[:-j] |
|
break |
|
else: |
|
continue |
|
|
|
break |
|
|
|
return reply, stop_found |
|
|
|
|
|
def _generate_reply(question, state, stopping_strings=None, is_chat=False): |
|
generate_func = apply_extensions('custom_generate_reply') |
|
if generate_func is None: |
|
if shared.model_name == 'None' or shared.model is None: |
|
logger.error("No model is loaded! Select one in the Model tab.") |
|
yield '' |
|
return |
|
|
|
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel']: |
|
generate_func = generate_reply_custom |
|
elif shared.args.flexgen: |
|
generate_func = generate_reply_flexgen |
|
else: |
|
generate_func = generate_reply_HF |
|
|
|
|
|
original_question = question |
|
if not is_chat: |
|
state = apply_extensions('state', state) |
|
question = apply_extensions('input', question, state) |
|
|
|
|
|
all_stop_strings = [] |
|
for st in (stopping_strings, ast.literal_eval(f"[{state['custom_stopping_strings']}]")): |
|
if type(st) is list and len(st) > 0: |
|
all_stop_strings += st |
|
|
|
if shared.args.verbose: |
|
print(f'\n\n{question}\n--------------------\n') |
|
|
|
shared.stop_everything = False |
|
clear_torch_cache() |
|
seed = set_manual_seed(state['seed']) |
|
last_update = -1 |
|
reply = '' |
|
is_stream = state['stream'] |
|
if len(all_stop_strings) > 0 and not state['stream']: |
|
state = copy.deepcopy(state) |
|
state['stream'] = True |
|
|
|
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat): |
|
reply, stop_found = apply_stopping_strings(reply, all_stop_strings) |
|
if is_stream: |
|
cur_time = time.time() |
|
if cur_time - last_update > 0.041666666666666664: |
|
last_update = cur_time |
|
yield reply |
|
|
|
if stop_found: |
|
break |
|
|
|
if not is_chat: |
|
reply = apply_extensions('output', reply, state) |
|
|
|
yield reply |
|
|
|
|
|
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): |
|
generate_params = {} |
|
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'repetition_penalty_range', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']: |
|
generate_params[k] = state[k] |
|
|
|
for k in ['epsilon_cutoff', 'eta_cutoff']: |
|
if state[k] > 0: |
|
generate_params[k] = state[k] * 1e-4 |
|
|
|
if state['ban_eos_token']: |
|
generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id] |
|
|
|
if shared.args.no_cache: |
|
generate_params.update({'use_cache': False}) |
|
|
|
if shared.args.deepspeed: |
|
generate_params.update({'synced_gpus': True}) |
|
|
|
|
|
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) |
|
output = input_ids[0] |
|
cuda = not any((shared.args.cpu, shared.args.deepspeed)) |
|
|
|
|
|
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) |
|
original_input_ids = input_ids |
|
generate_params.update({'inputs': input_ids}) |
|
if inputs_embeds is not None: |
|
generate_params.update({'inputs_embeds': inputs_embeds}) |
|
|
|
|
|
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] |
|
generate_params['eos_token_id'] = eos_token_ids |
|
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList() |
|
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria()) |
|
|
|
processor = state.get('logits_processor', LogitsProcessorList([])) |
|
|
|
if type(processor) != LogitsProcessorList: |
|
processor = LogitsProcessorList([processor]) |
|
apply_extensions('logits_processor', processor, input_ids) |
|
generate_params['logits_processor'] = processor |
|
|
|
t0 = time.time() |
|
try: |
|
if not is_chat and not shared.is_seq2seq: |
|
yield '' |
|
|
|
|
|
if not state['stream']: |
|
with torch.no_grad(): |
|
output = shared.model.generate(**generate_params)[0] |
|
if cuda: |
|
output = output.cuda() |
|
|
|
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) |
|
|
|
|
|
|
|
else: |
|
|
|
def generate_with_callback(callback=None, *args, **kwargs): |
|
kwargs['stopping_criteria'].append(Stream(callback_func=callback)) |
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
shared.model.generate(**kwargs) |
|
|
|
def generate_with_streaming(**kwargs): |
|
return Iteratorize(generate_with_callback, [], kwargs, callback=None) |
|
|
|
with generate_with_streaming(**generate_params) as generator: |
|
for output in generator: |
|
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) |
|
if output[-1] in eos_token_ids: |
|
break |
|
|
|
except Exception: |
|
traceback.print_exc() |
|
finally: |
|
t1 = time.time() |
|
original_tokens = len(original_input_ids[0]) |
|
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) |
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') |
|
return |
|
|
|
|
|
def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False): |
|
seed = set_manual_seed(state['seed']) |
|
|
|
t0 = time.time() |
|
reply = '' |
|
try: |
|
if not is_chat: |
|
yield '' |
|
|
|
if not state['stream']: |
|
reply = shared.model.generate(question, state) |
|
yield reply |
|
else: |
|
for reply in shared.model.generate_with_streaming(question, state): |
|
yield reply |
|
|
|
except Exception: |
|
traceback.print_exc() |
|
finally: |
|
t1 = time.time() |
|
original_tokens = len(encode(original_question)[0]) |
|
new_tokens = len(encode(original_question + reply)[0]) - original_tokens |
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') |
|
return |
|
|
|
|
|
def generate_reply_flexgen(question, original_question, seed, state, stopping_strings=None, is_chat=False): |
|
generate_params = {} |
|
for k in ['max_new_tokens', 'do_sample', 'temperature']: |
|
generate_params[k] = state[k] |
|
|
|
if state['stream']: |
|
generate_params['max_new_tokens'] = 8 |
|
|
|
|
|
input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state)) |
|
output = input_ids[0] |
|
|
|
|
|
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else [] |
|
if not state['ban_eos_token']: |
|
generate_params['stop'] = eos_token_ids[-1] |
|
|
|
|
|
question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None) |
|
original_input_ids = input_ids |
|
generate_params.update({'inputs': input_ids}) |
|
if inputs_embeds is not None: |
|
generate_params.update({'inputs_embeds': inputs_embeds}) |
|
|
|
t0 = time.time() |
|
try: |
|
if not is_chat: |
|
yield '' |
|
|
|
|
|
if not state['stream']: |
|
with torch.no_grad(): |
|
output = shared.model.generate(**generate_params)[0] |
|
|
|
yield get_reply_from_output_ids(output, input_ids, original_question, state, is_chat=is_chat) |
|
|
|
|
|
else: |
|
for i in range(state['max_new_tokens'] // 8 + 1): |
|
if shared.stop_everything: |
|
break |
|
|
|
clear_torch_cache() |
|
with torch.no_grad(): |
|
output = shared.model.generate(**generate_params)[0] |
|
|
|
if np.count_nonzero(np.isin(input_ids[0], eos_token_ids)) < np.count_nonzero(np.isin(output, eos_token_ids)): |
|
break |
|
|
|
yield get_reply_from_output_ids(output, original_input_ids, original_question, state) |
|
input_ids = np.reshape(output, (1, output.shape[0])) |
|
generate_params.update({'inputs': input_ids}) |
|
|
|
except Exception: |
|
traceback.print_exc() |
|
finally: |
|
t1 = time.time() |
|
original_tokens = len(original_input_ids[0]) |
|
new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0) |
|
print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') |
|
return |
|
|