TCO_calculator / results.py
jadehardouin's picture
Update results.py
2804169
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
shared_page1 = None
shared_page2 = None
def set_shared_pages(page1, page2):
global shared_page1, shared_page2
shared_page1 = page1
shared_page2 = page2
def compare_info(tco1, tco2, dropdown, dropdown2):
if error_occurred == False :
#Compute the cost/request ratio
r = tco1 / tco2
if r < 1:
comparison_result = f"""The cost/request of the second {dropdown2} service is <b>{1/r:.5f} times more expensive</b> than the one of the first {dropdown} service."""
elif r > 1:
comparison_result = f"""The cost/request of the second {dropdown2} service is <b>{r:.5f} times cheaper</b> than the one of the first {dropdown} service."""
else:
comparison_result = f"""Both solutions have the <b>same cost/request</b>."""
# Create a bar chart
services = [dropdown, dropdown2]
costs_to_compare = [tco1, tco2]
plt.figure(figsize=(6, 4))
plt.bar(services, costs_to_compare, color=['red', 'green'])
plt.xlabel('AI option services', fontsize=10)
plt.ylabel('($) Cost/Request', fontsize=10)
plt.title('Comparison of Cost/Request', fontsize=14)
plt.tight_layout()
plt.savefig('cost_comparison.png') # Save to a file
return gr.update(value='cost_comparison.png', visible=True), comparison_result
else:
return None, ""
def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2):
if error_occurred == False:
if shared_page1 is None or shared_page2 is None:
raise ValueError("Shared instances not set.")
list_values = []
first_sol = [tco1, labor_cost1, latency]
second_sol = [tco2, labor_cost2, latency2]
list_values.append(first_sol)
list_values.append(second_sol)
data = pd.DataFrame(list_values, index=[dropdown, dropdown2], columns=["Cost/request ($) ", "Labor Cost ($/month)", "Average latency (s)"])
formatted_data = data.copy()
formatted_data["Cost/request ($) "] = formatted_data["Cost/request ($) "].apply('{:.5f}'.format)
formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.0f}'.format)
styled_data = formatted_data.style\
.set_properties(**{'background-color': '#ffffff', 'color': '#000000', 'border-color': '#e0e0e0', 'border-width': '1px', 'border-style': 'solid'})\
.to_html()
centered_styled_data = f"<center>{styled_data}</center>"
return gr.update(value=centered_styled_data)
else:
return ""
def compute_cost_per_request(*args):
dropdown_id = args[-4]
dropdown_id2 = args[-3]
input_tokens = args[-2]
output_tokens = args[-1]
global error_occurred
if dropdown_id!="" and dropdown_id2!="":
error_occurred = False
page1 = shared_page1
page2 = shared_page2
args_page1 = list(args) + [dropdown_id, input_tokens, output_tokens]
args_page2 = list(args) + [dropdown_id2, input_tokens, output_tokens]
result_page1 = page1.compute_cost_per_token(*args_page1)
result_page2 = page2.compute_cost_per_token(*args_page2)
tco1, latency, labor_cost1 = result_page1
tco2, latency2, labor_cost2 = result_page2
return tco1, latency, labor_cost1, tco2, latency2, labor_cost2
else:
error_occurred = True
raise gr.Error("Please select two AI service options.")
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
if error_occurred == False:
request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 1600001, 100000))
costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
data = pd.DataFrame({
"Number of requests": request_ranges * 2,
"Cost ($)": costs_tco1 + costs_tco2,
"AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
}
)
return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)", color="AI model service", color_legend_title=" ", color_legend_position="right", title="TCO for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])
else:
return ""
error_occurred = False