jadehardouin commited on
Commit
373e8e8
1 Parent(s): 14ace35

Update contribution_example.py

Browse files
Files changed (1) hide show
  1. contribution_example.py +9 -10
contribution_example.py CHANGED
@@ -53,16 +53,6 @@ class NewModel(BaseTCOModel):
53
  super().__init__()
54
 
55
  def render(self):
56
- #Create update functions that adjust the values of your cost/token depending on user's choices
57
- def on_model_parameter_change(model_parameter):
58
- if model_parameter == "Option 1":
59
- input_tokens_cost_per_token = 0.1
60
- output_tokens_cost_per_token = 0.2
61
- else:
62
- input_tokens_cost_per_token = 0.2
63
- output_tokens_cost_per_token = 0.4
64
- return input_tokens_cost_per_token, output_tokens_cost_per_token
65
-
66
  #Create as many Gradio components as you want to provide information or customization to the user
67
  #Put all their visibility to False
68
  #Don't forget to put the interactive parameter of the component to False if the value is fixed
@@ -81,6 +71,15 @@ class NewModel(BaseTCOModel):
81
  label="($) Price/1K output prompt tokens",
82
  interactive=False
83
  )
 
 
 
 
 
 
 
 
 
84
 
85
  #Trigger the values modification linked to the parameter change
86
  self.model_parameter.change(on_model_parameter_change, inputs=self.model_parameter, outputs=[self.input_cost_per_token, self.output_cost_per_token])
 
53
  super().__init__()
54
 
55
  def render(self):
 
 
 
 
 
 
 
 
 
 
56
  #Create as many Gradio components as you want to provide information or customization to the user
57
  #Put all their visibility to False
58
  #Don't forget to put the interactive parameter of the component to False if the value is fixed
 
71
  label="($) Price/1K output prompt tokens",
72
  interactive=False
73
  )
74
+ #Create update functions that adjust the values of your cost/token depending on user's choices
75
+ def on_model_parameter_change(model_parameter):
76
+ if model_parameter == "Option 1":
77
+ input_tokens_cost_per_token = 0.1
78
+ output_tokens_cost_per_token = 0.2
79
+ else:
80
+ input_tokens_cost_per_token = 0.2
81
+ output_tokens_cost_per_token = 0.4
82
+ return input_tokens_cost_per_token, output_tokens_cost_per_token
83
 
84
  #Trigger the values modification linked to the parameter change
85
  self.model_parameter.change(on_model_parameter_change, inputs=self.model_parameter, outputs=[self.input_cost_per_token, self.output_cost_per_token])