Spaces:
Running
Running
Mocci lutha
commited on
Commit
•
8ea7968
1
Parent(s):
a503ff2
Delete app.py
Browse files
app.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import argparse
|
4 |
-
import traceback
|
5 |
-
import logging
|
6 |
-
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
-
import librosa
|
9 |
-
import torch
|
10 |
-
import asyncio
|
11 |
-
import edge_tts
|
12 |
-
from datetime import datetime
|
13 |
-
from fairseq import checkpoint_utils
|
14 |
-
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
15 |
-
from vc_infer_pipeline import VC
|
16 |
-
from config import (
|
17 |
-
is_half,
|
18 |
-
device
|
19 |
-
)
|
20 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
21 |
-
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
|
22 |
-
|
23 |
-
def create_vc_fn(tgt_sr, net_g, vc, if_f0, file_index, file_big_npy):
|
24 |
-
def vc_fn(
|
25 |
-
input_audio,
|
26 |
-
f0_up_key,
|
27 |
-
f0_method,
|
28 |
-
index_rate,
|
29 |
-
tts_mode,
|
30 |
-
tts_text,
|
31 |
-
tts_voice
|
32 |
-
):
|
33 |
-
try:
|
34 |
-
if tts_mode:
|
35 |
-
if len(tts_text) > 100 and limitation:
|
36 |
-
return "Text is too long", None
|
37 |
-
if tts_text is None or tts_voice is None:
|
38 |
-
return "You need to enter text and select a voice", None
|
39 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
40 |
-
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
|
41 |
-
else:
|
42 |
-
if args.files:
|
43 |
-
audio, sr = librosa.load(input_audio, sr=16000, mono=True)
|
44 |
-
else:
|
45 |
-
if input_audio is None:
|
46 |
-
return "You need to upload an audio", None
|
47 |
-
sampling_rate, audio = input_audio
|
48 |
-
duration = audio.shape[0] / sampling_rate
|
49 |
-
if duration > 20 and limitation:
|
50 |
-
return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
|
51 |
-
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
52 |
-
if len(audio.shape) > 1:
|
53 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
54 |
-
if sampling_rate != 16000:
|
55 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
56 |
-
times = [0, 0, 0]
|
57 |
-
f0_up_key = int(f0_up_key)
|
58 |
-
audio_opt = vc.pipeline(
|
59 |
-
hubert_model,
|
60 |
-
net_g,
|
61 |
-
0,
|
62 |
-
audio,
|
63 |
-
times,
|
64 |
-
f0_up_key,
|
65 |
-
f0_method,
|
66 |
-
file_index,
|
67 |
-
file_big_npy,
|
68 |
-
index_rate,
|
69 |
-
if_f0,
|
70 |
-
)
|
71 |
-
print(
|
72 |
-
f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
|
73 |
-
)
|
74 |
-
return "Success", (tgt_sr, audio_opt)
|
75 |
-
except:
|
76 |
-
info = traceback.format_exc()
|
77 |
-
print(info)
|
78 |
-
return info, (None, None)
|
79 |
-
return vc_fn
|
80 |
-
|
81 |
-
def load_hubert():
|
82 |
-
global hubert_model
|
83 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
84 |
-
["hubert_base.pt"],
|
85 |
-
suffix="",
|
86 |
-
)
|
87 |
-
hubert_model = models[0]
|
88 |
-
hubert_model = hubert_model.to(device)
|
89 |
-
if is_half:
|
90 |
-
hubert_model = hubert_model.half()
|
91 |
-
else:
|
92 |
-
hubert_model = hubert_model.float()
|
93 |
-
hubert_model.eval()
|
94 |
-
|
95 |
-
def change_to_tts_mode(tts_mode):
|
96 |
-
if tts_mode:
|
97 |
-
return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
|
98 |
-
else:
|
99 |
-
return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
|
100 |
-
|
101 |
-
if __name__ == '__main__':
|
102 |
-
parser = argparse.ArgumentParser()
|
103 |
-
parser.add_argument('--api', action="store_true", default=False)
|
104 |
-
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
105 |
-
parser.add_argument("--files", action="store_true", default=False, help="load audio from path")
|
106 |
-
args, unknown = parser.parse_known_args()
|
107 |
-
load_hubert()
|
108 |
-
models = []
|
109 |
-
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
110 |
-
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
|
111 |
-
with open("weights/model_info.json", "r", encoding="utf-8") as f:
|
112 |
-
models_info = json.load(f)
|
113 |
-
for name, info in models_info.items():
|
114 |
-
if not info['enable']:
|
115 |
-
continue
|
116 |
-
title = info['title']
|
117 |
-
author = info.get("author", None)
|
118 |
-
cover = f"weights/{name}/{info['cover']}"
|
119 |
-
index = f"weights/{name}/{info['feature_retrieval_library']}"
|
120 |
-
cpt = torch.load(f"weights/{name}/{name}.pth", map_location="cpu")
|
121 |
-
tgt_sr = cpt["config"][-1]
|
122 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
123 |
-
if_f0 = cpt.get("f0", 1)
|
124 |
-
if if_f0 == 1:
|
125 |
-
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
126 |
-
else:
|
127 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
128 |
-
del net_g.enc_q
|
129 |
-
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
|
130 |
-
net_g.eval().to(device)
|
131 |
-
if is_half:
|
132 |
-
net_g = net_g.half()
|
133 |
-
else:
|
134 |
-
net_g = net_g.float()
|
135 |
-
vc = VC(tgt_sr, device, is_half)
|
136 |
-
models.append((name, title, author, cover, create_vc_fn(tgt_sr, net_g, vc, if_f0, index)))
|
137 |
-
with gr.Blocks() as app:
|
138 |
-
gr.Markdown(
|
139 |
-
"# <center> RVC Models\n"
|
140 |
-
"## <center> The input audio should be clean and pure voice without background music.\n"
|
141 |
-
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=zomehwh.Rvc-Models)\n\n"
|
142 |
-
"[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/16MXRcKEjGDqQzVanvi8xYOOOlhdNBopM?usp=share_link)\n\n"
|
143 |
-
"[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/zomehwh/rvc-models?duplicate=true)\n\n"
|
144 |
-
"[![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)"
|
145 |
-
|
146 |
-
)
|
147 |
-
with gr.Tabs():
|
148 |
-
for (name, title, author, cover, vc_fn) in models:
|
149 |
-
with gr.TabItem(name):
|
150 |
-
with gr.Row():
|
151 |
-
gr.Markdown(
|
152 |
-
'<div align="center">'
|
153 |
-
f'<div>{title}</div>\n'+
|
154 |
-
(f'<div>Model author: {author}</div>' if author else "")+
|
155 |
-
(f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
|
156 |
-
'</div>'
|
157 |
-
)
|
158 |
-
with gr.Row():
|
159 |
-
with gr.Column():
|
160 |
-
if args.files:
|
161 |
-
vc_input = gr.Textbox(label="Input audio path")
|
162 |
-
else:
|
163 |
-
vc_input = gr.Audio(label="Input audio"+' (less than 20 seconds)' if limitation else '')
|
164 |
-
vc_transpose = gr.Number(label="Transpose", value=0)
|
165 |
-
vc_f0method = gr.Radio(
|
166 |
-
label="Pitch extraction algorithm, PM is fast but Harvest is better for low frequencies",
|
167 |
-
choices=["pm", "harvest"],
|
168 |
-
value="pm",
|
169 |
-
interactive=True,
|
170 |
-
)
|
171 |
-
vc_index_ratio = gr.Slider(
|
172 |
-
minimum=0,
|
173 |
-
maximum=1,
|
174 |
-
label="Retrieval feature ratio",
|
175 |
-
value=0.6,
|
176 |
-
interactive=True,
|
177 |
-
)
|
178 |
-
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
|
179 |
-
tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
|
180 |
-
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
|
181 |
-
vc_submit = gr.Button("Generate", variant="primary")
|
182 |
-
with gr.Column():
|
183 |
-
vc_output1 = gr.Textbox(label="Output Message")
|
184 |
-
vc_output2 = gr.Audio(label="Output Audio")
|
185 |
-
vc_submit.click(vc_fn, [vc_input, vc_transpose, vc_f0method, vc_index_ratio, tts_mode, tts_text, tts_voice], [vc_output1, vc_output2])
|
186 |
-
tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice])
|
187 |
-
app.queue(concurrency_count=1, max_size=20, api_open=args.api).launch(share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|