Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Commit
•
48c8053
1
Parent(s):
a13ea9a
Delete clipseg/models/clipseg.py
Browse files- clipseg/models/clipseg.py +0 -552
clipseg/models/clipseg.py
DELETED
@@ -1,552 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from os.path import basename, dirname, join, isfile
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as nnf
|
6 |
-
from torch.nn.modules.activation import ReLU
|
7 |
-
|
8 |
-
|
9 |
-
def precompute_clip_vectors():
|
10 |
-
|
11 |
-
from trails.initialization import init_dataset
|
12 |
-
lvis = init_dataset('LVIS_OneShot3', split='train', mask='text_label', image_size=224, aug=1, normalize=True,
|
13 |
-
reduce_factor=None, add_bar=False, negative_prob=0.5)
|
14 |
-
|
15 |
-
all_names = list(lvis.category_names.values())
|
16 |
-
|
17 |
-
import clip
|
18 |
-
from models.clip_prompts import imagenet_templates
|
19 |
-
clip_model = clip.load("ViT-B/32", device='cuda', jit=False)[0]
|
20 |
-
prompt_vectors = {}
|
21 |
-
for name in all_names[:100]:
|
22 |
-
with torch.no_grad():
|
23 |
-
conditionals = [t.format(name).replace('_', ' ') for t in imagenet_templates]
|
24 |
-
text_tokens = clip.tokenize(conditionals).cuda()
|
25 |
-
cond = clip_model.encode_text(text_tokens).cpu()
|
26 |
-
|
27 |
-
for cond, vec in zip(conditionals, cond):
|
28 |
-
prompt_vectors[cond] = vec.cpu()
|
29 |
-
|
30 |
-
import pickle
|
31 |
-
|
32 |
-
pickle.dump(prompt_vectors, open('precomputed_prompt_vectors.pickle', 'wb'))
|
33 |
-
|
34 |
-
|
35 |
-
def get_prompt_list(prompt):
|
36 |
-
if prompt == 'plain':
|
37 |
-
return ['{}']
|
38 |
-
elif prompt == 'fixed':
|
39 |
-
return ['a photo of a {}.']
|
40 |
-
elif prompt == 'shuffle':
|
41 |
-
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.']
|
42 |
-
elif prompt == 'shuffle+':
|
43 |
-
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.',
|
44 |
-
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.',
|
45 |
-
'a bad photo of a {}.', 'a photo of the {}.']
|
46 |
-
elif prompt == 'shuffle_clip':
|
47 |
-
from models.clip_prompts import imagenet_templates
|
48 |
-
return imagenet_templates
|
49 |
-
else:
|
50 |
-
raise ValueError('Invalid value for prompt')
|
51 |
-
|
52 |
-
|
53 |
-
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
|
54 |
-
"""
|
55 |
-
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
|
56 |
-
The mlp and layer norm come from CLIP.
|
57 |
-
x: input.
|
58 |
-
b: multihead attention module.
|
59 |
-
"""
|
60 |
-
|
61 |
-
x_ = b.ln_1(x)
|
62 |
-
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1)
|
63 |
-
tgt_len, bsz, embed_dim = q.size()
|
64 |
-
|
65 |
-
head_dim = embed_dim // b.attn.num_heads
|
66 |
-
scaling = float(head_dim) ** -0.5
|
67 |
-
|
68 |
-
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
69 |
-
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
70 |
-
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
71 |
-
|
72 |
-
q = q * scaling
|
73 |
-
|
74 |
-
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2
|
75 |
-
if attn_mask is not None:
|
76 |
-
|
77 |
-
|
78 |
-
attn_mask_type, attn_mask = attn_mask
|
79 |
-
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
|
80 |
-
attn_mask = attn_mask.repeat(n_heads, 1)
|
81 |
-
|
82 |
-
if attn_mask_type == 'cls_token':
|
83 |
-
# the mask only affects similarities compared to the readout-token.
|
84 |
-
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...]
|
85 |
-
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
|
86 |
-
|
87 |
-
if attn_mask_type == 'all':
|
88 |
-
# print(attn_output_weights.shape, attn_mask[:, None].shape)
|
89 |
-
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
|
90 |
-
|
91 |
-
|
92 |
-
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
93 |
-
|
94 |
-
attn_output = torch.bmm(attn_output_weights, v)
|
95 |
-
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
96 |
-
attn_output = b.attn.out_proj(attn_output)
|
97 |
-
|
98 |
-
x = x + attn_output
|
99 |
-
x = x + b.mlp(b.ln_2(x))
|
100 |
-
|
101 |
-
if with_aff:
|
102 |
-
return x, attn_output_weights
|
103 |
-
else:
|
104 |
-
return x
|
105 |
-
|
106 |
-
|
107 |
-
class CLIPDenseBase(nn.Module):
|
108 |
-
|
109 |
-
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
|
110 |
-
super().__init__()
|
111 |
-
|
112 |
-
import clip
|
113 |
-
|
114 |
-
# prec = torch.FloatTensor
|
115 |
-
self.clip_model, _ = clip.load(version, device='cpu', jit=False)
|
116 |
-
self.model = self.clip_model.visual
|
117 |
-
|
118 |
-
# if not None, scale conv weights such that we obtain n_tokens.
|
119 |
-
self.n_tokens = n_tokens
|
120 |
-
|
121 |
-
for p in self.clip_model.parameters():
|
122 |
-
p.requires_grad_(False)
|
123 |
-
|
124 |
-
# conditional
|
125 |
-
if reduce_cond is not None:
|
126 |
-
self.reduce_cond = nn.Linear(512, reduce_cond)
|
127 |
-
for p in self.reduce_cond.parameters():
|
128 |
-
p.requires_grad_(False)
|
129 |
-
else:
|
130 |
-
self.reduce_cond = None
|
131 |
-
|
132 |
-
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
133 |
-
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim)
|
134 |
-
|
135 |
-
self.reduce = nn.Linear(768, reduce_dim)
|
136 |
-
|
137 |
-
self.prompt_list = get_prompt_list(prompt)
|
138 |
-
|
139 |
-
# precomputed prompts
|
140 |
-
import pickle
|
141 |
-
if isfile('precomputed_prompt_vectors.pickle'):
|
142 |
-
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb'))
|
143 |
-
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()}
|
144 |
-
else:
|
145 |
-
self.precomputed_prompts = dict()
|
146 |
-
|
147 |
-
def rescaled_pos_emb(self, new_size):
|
148 |
-
assert len(new_size) == 2
|
149 |
-
|
150 |
-
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
151 |
-
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T
|
152 |
-
return torch.cat([self.model.positional_embedding[:1], b])
|
153 |
-
|
154 |
-
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
155 |
-
|
156 |
-
|
157 |
-
with torch.no_grad():
|
158 |
-
|
159 |
-
inp_size = x_inp.shape[2:]
|
160 |
-
|
161 |
-
if self.n_tokens is not None:
|
162 |
-
stride2 = x_inp.shape[2] // self.n_tokens
|
163 |
-
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True)
|
164 |
-
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation)
|
165 |
-
else:
|
166 |
-
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
|
167 |
-
|
168 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
169 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
170 |
-
|
171 |
-
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
172 |
-
|
173 |
-
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
|
174 |
-
|
175 |
-
if x.shape[1] != standard_n_tokens:
|
176 |
-
new_shape = int(math.sqrt(x.shape[1]-1))
|
177 |
-
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:]
|
178 |
-
else:
|
179 |
-
x = x + self.model.positional_embedding.to(x.dtype)
|
180 |
-
|
181 |
-
x = self.model.ln_pre(x)
|
182 |
-
|
183 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
184 |
-
|
185 |
-
activations, affinities = [], []
|
186 |
-
for i, res_block in enumerate(self.model.transformer.resblocks):
|
187 |
-
|
188 |
-
if mask is not None:
|
189 |
-
mask_layer, mask_type, mask_tensor = mask
|
190 |
-
if mask_layer == i or mask_layer == 'all':
|
191 |
-
# import ipdb; ipdb.set_trace()
|
192 |
-
size = int(math.sqrt(x.shape[0] - 1))
|
193 |
-
|
194 |
-
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size))
|
195 |
-
|
196 |
-
else:
|
197 |
-
attn_mask = None
|
198 |
-
else:
|
199 |
-
attn_mask = None
|
200 |
-
|
201 |
-
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask)
|
202 |
-
|
203 |
-
if i in extract_layers:
|
204 |
-
affinities += [aff_per_head]
|
205 |
-
|
206 |
-
#if self.n_tokens is not None:
|
207 |
-
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
|
208 |
-
#else:
|
209 |
-
activations += [x]
|
210 |
-
|
211 |
-
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
|
212 |
-
print('early skip')
|
213 |
-
break
|
214 |
-
|
215 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
216 |
-
x = self.model.ln_post(x[:, 0, :])
|
217 |
-
|
218 |
-
if self.model.proj is not None:
|
219 |
-
x = x @ self.model.proj
|
220 |
-
|
221 |
-
return x, activations, affinities
|
222 |
-
|
223 |
-
def sample_prompts(self, words, prompt_list=None):
|
224 |
-
|
225 |
-
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
226 |
-
|
227 |
-
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True)
|
228 |
-
prompts = [prompt_list[i] for i in prompt_indices]
|
229 |
-
return [promt.format(w) for promt, w in zip(prompts, words)]
|
230 |
-
|
231 |
-
def get_cond_vec(self, conditional, batch_size):
|
232 |
-
# compute conditional from a single string
|
233 |
-
if conditional is not None and type(conditional) == str:
|
234 |
-
cond = self.compute_conditional(conditional)
|
235 |
-
cond = cond.repeat(batch_size, 1)
|
236 |
-
|
237 |
-
# compute conditional from string list/tuple
|
238 |
-
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str:
|
239 |
-
assert len(conditional) == batch_size
|
240 |
-
cond = self.compute_conditional(conditional)
|
241 |
-
|
242 |
-
# use conditional directly
|
243 |
-
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2:
|
244 |
-
cond = conditional
|
245 |
-
|
246 |
-
# compute conditional from image
|
247 |
-
elif conditional is not None and type(conditional) == torch.Tensor:
|
248 |
-
with torch.no_grad():
|
249 |
-
cond, _, _ = self.visual_forward(conditional)
|
250 |
-
else:
|
251 |
-
raise ValueError('invalid conditional')
|
252 |
-
return cond
|
253 |
-
|
254 |
-
def compute_conditional(self, conditional):
|
255 |
-
import clip
|
256 |
-
|
257 |
-
dev = next(self.parameters()).device
|
258 |
-
|
259 |
-
if type(conditional) in {list, tuple}:
|
260 |
-
text_tokens = clip.tokenize(conditional).to(dev)
|
261 |
-
cond = self.clip_model.encode_text(text_tokens)
|
262 |
-
else:
|
263 |
-
if conditional in self.precomputed_prompts:
|
264 |
-
cond = self.precomputed_prompts[conditional].float().to(dev)
|
265 |
-
else:
|
266 |
-
text_tokens = clip.tokenize([conditional]).to(dev)
|
267 |
-
cond = self.clip_model.encode_text(text_tokens)[0]
|
268 |
-
|
269 |
-
if self.shift_vector is not None:
|
270 |
-
return cond + self.shift_vector
|
271 |
-
else:
|
272 |
-
return cond
|
273 |
-
|
274 |
-
|
275 |
-
def clip_load_untrained(version):
|
276 |
-
assert version == 'ViT-B/16'
|
277 |
-
from clip.model import CLIP
|
278 |
-
from clip.clip import _MODELS, _download
|
279 |
-
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval()
|
280 |
-
state_dict = model.state_dict()
|
281 |
-
|
282 |
-
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
283 |
-
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
284 |
-
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
285 |
-
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
286 |
-
image_resolution = vision_patch_size * grid_size
|
287 |
-
embed_dim = state_dict["text_projection"].shape[1]
|
288 |
-
context_length = state_dict["positional_embedding"].shape[0]
|
289 |
-
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
290 |
-
transformer_width = state_dict["ln_final.weight"].shape[0]
|
291 |
-
transformer_heads = transformer_width // 64
|
292 |
-
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
293 |
-
|
294 |
-
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size,
|
295 |
-
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers)
|
296 |
-
|
297 |
-
|
298 |
-
class CLIPDensePredT(CLIPDenseBase):
|
299 |
-
|
300 |
-
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed',
|
301 |
-
extra_blocks=0, reduce_cond=None, fix_shift=False,
|
302 |
-
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False,
|
303 |
-
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None):
|
304 |
-
|
305 |
-
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
306 |
-
# device = 'cpu'
|
307 |
-
|
308 |
-
self.extract_layers = extract_layers
|
309 |
-
self.cond_layer = cond_layer
|
310 |
-
self.limit_to_clip_only = limit_to_clip_only
|
311 |
-
self.process_cond = None
|
312 |
-
self.rev_activations = rev_activations
|
313 |
-
|
314 |
-
depth = len(extract_layers)
|
315 |
-
|
316 |
-
if add_calibration:
|
317 |
-
self.calibration_conds = 1
|
318 |
-
|
319 |
-
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
320 |
-
|
321 |
-
self.add_activation1 = True
|
322 |
-
|
323 |
-
self.version = version
|
324 |
-
|
325 |
-
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
326 |
-
|
327 |
-
if fix_shift:
|
328 |
-
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
|
329 |
-
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False)
|
330 |
-
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
|
331 |
-
else:
|
332 |
-
self.shift_vector = None
|
333 |
-
|
334 |
-
if trans_conv is None:
|
335 |
-
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
336 |
-
else:
|
337 |
-
# explicitly define transposed conv kernel size
|
338 |
-
trans_conv_ks = (trans_conv, trans_conv)
|
339 |
-
|
340 |
-
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
341 |
-
|
342 |
-
assert len(self.extract_layers) == depth
|
343 |
-
|
344 |
-
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
345 |
-
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))])
|
346 |
-
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)])
|
347 |
-
|
348 |
-
# refinement and trans conv
|
349 |
-
|
350 |
-
if learn_trans_conv_only:
|
351 |
-
for p in self.parameters():
|
352 |
-
p.requires_grad_(False)
|
353 |
-
|
354 |
-
for p in self.trans_conv.parameters():
|
355 |
-
p.requires_grad_(True)
|
356 |
-
|
357 |
-
self.prompt_list = get_prompt_list(prompt)
|
358 |
-
|
359 |
-
|
360 |
-
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
361 |
-
|
362 |
-
assert type(return_features) == bool
|
363 |
-
|
364 |
-
inp_image = inp_image.to(self.model.positional_embedding.device)
|
365 |
-
|
366 |
-
if mask is not None:
|
367 |
-
raise ValueError('mask not supported')
|
368 |
-
|
369 |
-
# x_inp = normalize(inp_image)
|
370 |
-
x_inp = inp_image
|
371 |
-
|
372 |
-
bs, dev = inp_image.shape[0], x_inp.device
|
373 |
-
|
374 |
-
cond = self.get_cond_vec(conditional, bs)
|
375 |
-
|
376 |
-
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers))
|
377 |
-
|
378 |
-
activation1 = activations[0]
|
379 |
-
activations = activations[1:]
|
380 |
-
|
381 |
-
_activations = activations[::-1] if not self.rev_activations else activations
|
382 |
-
|
383 |
-
a = None
|
384 |
-
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)):
|
385 |
-
|
386 |
-
if a is not None:
|
387 |
-
a = reduce(activation) + a
|
388 |
-
else:
|
389 |
-
a = reduce(activation)
|
390 |
-
|
391 |
-
if i == self.cond_layer:
|
392 |
-
if self.reduce_cond is not None:
|
393 |
-
cond = self.reduce_cond(cond)
|
394 |
-
|
395 |
-
a = self.film_mul(cond) * a + self.film_add(cond)
|
396 |
-
|
397 |
-
a = block(a)
|
398 |
-
|
399 |
-
for block in self.extra_blocks:
|
400 |
-
a = a + block(a)
|
401 |
-
|
402 |
-
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
403 |
-
|
404 |
-
size = int(math.sqrt(a.shape[2]))
|
405 |
-
|
406 |
-
a = a.view(bs, a.shape[1], size, size)
|
407 |
-
|
408 |
-
a = self.trans_conv(a)
|
409 |
-
|
410 |
-
if self.n_tokens is not None:
|
411 |
-
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True)
|
412 |
-
|
413 |
-
if self.upsample_proj is not None:
|
414 |
-
a = self.upsample_proj(a)
|
415 |
-
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear')
|
416 |
-
|
417 |
-
if return_features:
|
418 |
-
return a, visual_q, cond, [activation1] + activations
|
419 |
-
else:
|
420 |
-
return a,
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
class CLIPDensePredTMasked(CLIPDensePredT):
|
425 |
-
|
426 |
-
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4,
|
427 |
-
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False,
|
428 |
-
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None):
|
429 |
-
|
430 |
-
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim,
|
431 |
-
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond,
|
432 |
-
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only,
|
433 |
-
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration,
|
434 |
-
n_tokens=n_tokens)
|
435 |
-
|
436 |
-
def visual_forward_masked(self, img_s, seg_s):
|
437 |
-
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s))
|
438 |
-
|
439 |
-
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
|
440 |
-
|
441 |
-
if seg_s is None:
|
442 |
-
cond = cond_or_img_s
|
443 |
-
else:
|
444 |
-
img_s = cond_or_img_s
|
445 |
-
|
446 |
-
with torch.no_grad():
|
447 |
-
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
|
448 |
-
|
449 |
-
return super().forward(img_q, cond, return_features=return_features)
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
class CLIPDenseBaseline(CLIPDenseBase):
|
454 |
-
|
455 |
-
def __init__(self, version='ViT-B/32', cond_layer=0,
|
456 |
-
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed',
|
457 |
-
reduce_cond=None, limit_to_clip_only=False, n_tokens=None):
|
458 |
-
|
459 |
-
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
460 |
-
device = 'cpu'
|
461 |
-
|
462 |
-
# self.cond_layer = cond_layer
|
463 |
-
self.extract_layer = extract_layer
|
464 |
-
self.limit_to_clip_only = limit_to_clip_only
|
465 |
-
self.shift_vector = None
|
466 |
-
|
467 |
-
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version]
|
468 |
-
|
469 |
-
assert reduce2_dim is not None
|
470 |
-
|
471 |
-
self.reduce2 = nn.Sequential(
|
472 |
-
nn.Linear(reduce_dim, reduce2_dim),
|
473 |
-
nn.ReLU(),
|
474 |
-
nn.Linear(reduce2_dim, reduce_dim)
|
475 |
-
)
|
476 |
-
|
477 |
-
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version]
|
478 |
-
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
479 |
-
|
480 |
-
|
481 |
-
def forward(self, inp_image, conditional=None, return_features=False):
|
482 |
-
|
483 |
-
inp_image = inp_image.to(self.model.positional_embedding.device)
|
484 |
-
|
485 |
-
# x_inp = normalize(inp_image)
|
486 |
-
x_inp = inp_image
|
487 |
-
|
488 |
-
bs, dev = inp_image.shape[0], x_inp.device
|
489 |
-
|
490 |
-
cond = self.get_cond_vec(conditional, bs)
|
491 |
-
|
492 |
-
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer])
|
493 |
-
|
494 |
-
a = activations[0]
|
495 |
-
a = self.reduce(a)
|
496 |
-
a = self.film_mul(cond) * a + self.film_add(cond)
|
497 |
-
|
498 |
-
if self.reduce2 is not None:
|
499 |
-
a = self.reduce2(a)
|
500 |
-
|
501 |
-
# the original model would execute a transformer block here
|
502 |
-
|
503 |
-
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
504 |
-
|
505 |
-
size = int(math.sqrt(a.shape[2]))
|
506 |
-
|
507 |
-
a = a.view(bs, a.shape[1], size, size)
|
508 |
-
a = self.trans_conv(a)
|
509 |
-
|
510 |
-
if return_features:
|
511 |
-
return a, visual_q, cond, activations
|
512 |
-
else:
|
513 |
-
return a,
|
514 |
-
|
515 |
-
|
516 |
-
class CLIPSegMultiLabel(nn.Module):
|
517 |
-
|
518 |
-
def __init__(self, model) -> None:
|
519 |
-
super().__init__()
|
520 |
-
|
521 |
-
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC
|
522 |
-
|
523 |
-
self.pascal_classes = VOC
|
524 |
-
|
525 |
-
from models.clipseg import CLIPDensePredT
|
526 |
-
from general_utils import load_model
|
527 |
-
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
|
528 |
-
self.clipseg = load_model(model, strict=False)
|
529 |
-
|
530 |
-
self.clipseg.eval()
|
531 |
-
|
532 |
-
def forward(self, x):
|
533 |
-
|
534 |
-
bs = x.shape[0]
|
535 |
-
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
|
536 |
-
|
537 |
-
for class_id, class_name in enumerate(self.pascal_classes):
|
538 |
-
|
539 |
-
fac = 3 if class_name == 'background' else 1
|
540 |
-
|
541 |
-
with torch.no_grad():
|
542 |
-
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac
|
543 |
-
|
544 |
-
out[class_id] += pred
|
545 |
-
|
546 |
-
|
547 |
-
out = out.permute(1, 0, 2, 3)
|
548 |
-
|
549 |
-
return out
|
550 |
-
|
551 |
-
# construct output tensor
|
552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|