Fabrice-TIERCELIN commited on
Commit
97f85d2
1 Parent(s): 97505f8

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +16 -6
  2. app.py +339 -162
  3. requirements.txt +6 -9
README.md CHANGED
@@ -1,13 +1,23 @@
1
  ---
2
- title: Stable Diffusion Inpainting
3
- emoji:
4
- colorFrom: gray
5
- colorTo: yellow
 
 
 
 
 
 
 
 
 
6
  sdk: gradio
7
- sdk_version: 3.11.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Inpaint SDXL (any size)
3
+ emoji: ↕️
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ tags:
7
+ - Image-to-Image
8
+ - Image-2-Image
9
+ - Img-to-Img
10
+ - Img-2-Img
11
+ - SDXL
12
+ - Stable Diffusion
13
+ - language models
14
+ - LLMs
15
  sdk: gradio
16
+ sdk_version: 3.41.2
17
  app_file: app.py
18
  pinned: false
19
  license: mit
20
+ short_description: Modifies one detail of your image, at any resolution, freely
21
  ---
22
 
23
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,174 +1,351 @@
 
 
 
1
  import gradio as gr
2
- #test
3
- from io import BytesIO
4
- import requests
5
- import PIL
6
- from PIL import Image
7
  import numpy as np
8
- import os
9
- import uuid
 
 
10
  import torch
11
- from torch import autocast
12
- import cv2
13
- from matplotlib import pyplot as plt
14
- from diffusers import DiffusionPipeline
15
- from torchvision import transforms
16
- from clipseg.models.clipseg import CLIPDensePredT
17
-
18
- auth_token = os.environ.get("API_TOKEN") or True
19
 
20
- def download_image(url):
21
- response = requests.get(url)
22
- return PIL.Image.open(BytesIO(response.content)).convert("RGB")
23
 
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
25
- pipe = DiffusionPipeline.from_pretrained(
26
- "runwayml/stable-diffusion-inpainting",
27
- revision="fp16",
28
- torch_dtype=torch.float16,
29
- use_auth_token=auth_token,
30
- ).to(device)
31
-
32
- model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
33
- model.eval()
34
- model.load_state_dict(torch.load('./clipseg/weights/rd64-uni.pth', map_location=torch.device('cuda')), strict=False)
35
-
36
- transform = transforms.Compose([
37
- transforms.ToTensor(),
38
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
39
- transforms.Resize((512, 512)),
40
- ])
41
-
42
- def predict(radio, dict, word_mask, prompt=""):
43
- if(radio == "draw a mask above"):
44
- with autocast("cuda"):
45
- init_image = dict["image"].convert("RGB").resize((512, 512))
46
- mask = dict["mask"].convert("RGB").resize((512, 512))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  else:
48
- img = transform(dict["image"]).unsqueeze(0)
49
- word_masks = [word_mask]
50
- with torch.no_grad():
51
- preds = model(img.repeat(len(word_masks),1,1,1), word_masks)[0]
52
- init_image = dict['image'].convert('RGB').resize((512, 512))
53
- filename = f"{uuid.uuid4()}.png"
54
- plt.imsave(filename,torch.sigmoid(preds[0][0]))
55
- img2 = cv2.imread(filename)
56
- gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
57
- (thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
58
- cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
59
- mask = Image.fromarray(np.uint8(bw_image)).convert('RGB')
60
- os.remove(filename)
61
- #with autocast("cuda"):
62
- output = pipe(prompt = prompt, image=init_image, mask_image=mask, strength=0.8)
63
- return output.images[0]
64
-
65
- # examples = [[dict(image="init_image.png", mask="mask_image.png"), "A panda sitting on a bench"]]
66
- css = '''
67
- .container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
68
- #image_upload{min-height:400px}
69
- #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
70
- #mask_radio .gr-form{background:transparent; border: none}
71
- #word_mask{margin-top: .75em !important}
72
- #word_mask textarea:disabled{opacity: 0.3}
73
- .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
74
- .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
75
- .dark .footer {border-color: #303030}
76
- .dark .footer>p {background: #0b0f19}
77
- .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
78
- #image_upload .touch-none{display: flex}
79
- '''
80
- def swap_word_mask(radio_option):
81
- if(radio_option == "type what to mask below"):
82
- return gr.update(interactive=True, placeholder="A cat")
83
  else:
84
- return gr.update(interactive=False, placeholder="Disabled")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- image_blocks = gr.Blocks(css=css)
87
- with image_blocks as demo:
88
- gr.HTML(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  """
90
- <div style="text-align: center; max-width: 650px; margin: 0 auto;">
91
- <div
92
- style="
93
- display: inline-flex;
94
- align-items: center;
95
- gap: 0.8rem;
96
- font-size: 1.75rem;
97
- "
98
- >
99
- <svg
100
- width="0.65em"
101
- height="0.65em"
102
- viewBox="0 0 115 115"
103
- fill="none"
104
- xmlns="http://www.w3.org/2000/svg"
105
- >
106
- <rect width="23" height="23" fill="white"></rect>
107
- <rect y="69" width="23" height="23" fill="white"></rect>
108
- <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
109
- <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
110
- <rect x="46" width="23" height="23" fill="white"></rect>
111
- <rect x="46" y="69" width="23" height="23" fill="white"></rect>
112
- <rect x="69" width="23" height="23" fill="black"></rect>
113
- <rect x="69" y="69" width="23" height="23" fill="black"></rect>
114
- <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
115
- <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
116
- <rect x="115" y="46" width="23" height="23" fill="white"></rect>
117
- <rect x="115" y="115" width="23" height="23" fill="white"></rect>
118
- <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
119
- <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
120
- <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
121
- <rect x="92" y="69" width="23" height="23" fill="white"></rect>
122
- <rect x="69" y="46" width="23" height="23" fill="white"></rect>
123
- <rect x="69" y="115" width="23" height="23" fill="white"></rect>
124
- <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
125
- <rect x="46" y="46" width="23" height="23" fill="black"></rect>
126
- <rect x="46" y="115" width="23" height="23" fill="black"></rect>
127
- <rect x="46" y="69" width="23" height="23" fill="black"></rect>
128
- <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
129
- <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
130
- <rect x="23" y="69" width="23" height="23" fill="black"></rect>
131
- </svg>
132
- <h1 style="font-weight: 900; margin-bottom: 7px;">
133
- Stable Diffusion Multi Inpainting
134
- </h1>
135
- </div>
136
- <p style="margin-bottom: 10px; font-size: 94%">
137
- Inpaint Stable Diffusion by either drawing a mask or typing what to replace
138
- </p>
139
- </div>
140
  """
141
  )
142
- with gr.Row():
143
- with gr.Column():
144
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload").style(height=400)
145
- with gr.Box(elem_id="mask_radio").style(border=False):
146
- radio = gr.Radio(["draw a mask above", "type what to mask below"], value="draw a mask above", show_label=False, interactive=True).style(container=False)
147
- word_mask = gr.Textbox(label = "What to find in your image", interactive=False, elem_id="word_mask", placeholder="Disabled").style(container=False)
148
- prompt = gr.Textbox(label = 'Your prompt (what you want to add in place of what you are removing)')
149
- radio.change(fn=swap_word_mask, inputs=radio, outputs=word_mask,show_progress=False)
150
- radio.change(None, inputs=[], outputs=image_blocks, _js = """
151
- () => {
152
- css_style = document.styleSheets[document.styleSheets.length - 1]
153
- last_item = css_style.cssRules[css_style.cssRules.length - 1]
154
- last_item.style.display = ["flex", ""].includes(last_item.style.display) ? "none" : "flex";
155
- }""")
156
- btn = gr.Button("Run")
157
- with gr.Column():
158
- result = gr.Image(label="Result")
159
- btn.click(fn=predict, inputs=[radio, image, word_mask, prompt], outputs=result)
160
- gr.HTML(
161
- """
162
- <div class="footer">
163
- <p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Inpainting by <a href="https://github.com/nagolinc" style="text-decoration: underline;" target="_blank">nagolinc</a> and <a href="https://github.com/patil-suraj" style="text-decoration: underline;">patil-suraj</a>, inpainting with words by <a href="https://twitter.com/yvrjsharma/" style="text-decoration: underline;" target="_blank">@yvrjsharma</a> and <a href="https://twitter.com/1littlecoder" style="text-decoration: underline;">@1littlecoder</a> - Gradio Demo by 🤗 Hugging Face
164
- </p>
165
- </div>
166
- <div class="acknowledgments">
167
- <p><h4>LICENSE</h4>
168
- The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
169
- <p><h4>Biases and content acknowledgment</h4>
170
- Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
171
- </div>
172
- """
173
- )
174
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionXLInpaintPipeline
2
+ from PIL import Image, ImageFilter
3
+
4
  import gradio as gr
 
 
 
 
 
5
  import numpy as np
6
+ import time
7
+ import math
8
+ import random
9
+ import imageio
10
  import torch
 
 
 
 
 
 
 
 
11
 
12
+ max_64_bit_int = 2**63 - 1
 
 
13
 
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ floatType = torch.float16 if torch.cuda.is_available() else torch.float32
16
+ variant = "fp16" if torch.cuda.is_available() else None
17
+ pipe = StableDiffusionXLInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype = floatType, variant = variant)
18
+ pipe = pipe.to(device)
19
+
20
+ def check(
21
+ source_img,
22
+ prompt,
23
+ uploaded_mask,
24
+ negative_prompt,
25
+ denoising_steps,
26
+ num_inference_steps,
27
+ guidance_scale,
28
+ image_guidance_scale,
29
+ strength,
30
+ randomize_seed,
31
+ seed,
32
+ debug_mode,
33
+ progress = gr.Progress()
34
+ ):
35
+ if source_img is None:
36
+ raise gr.Error("Please provide an image.")
37
+
38
+ if prompt is None or prompt == "":
39
+ raise gr.Error("Please provide a prompt input.")
40
+
41
+ def inpaint(
42
+ source_img,
43
+ prompt,
44
+ uploaded_mask,
45
+ negative_prompt,
46
+ denoising_steps,
47
+ num_inference_steps,
48
+ guidance_scale,
49
+ image_guidance_scale,
50
+ strength,
51
+ randomize_seed,
52
+ seed,
53
+ debug_mode,
54
+ progress = gr.Progress()
55
+ ):
56
+ check(
57
+ source_img,
58
+ prompt,
59
+ uploaded_mask,
60
+ negative_prompt,
61
+ denoising_steps,
62
+ num_inference_steps,
63
+ guidance_scale,
64
+ image_guidance_scale,
65
+ strength,
66
+ randomize_seed,
67
+ seed,
68
+ debug_mode
69
+ )
70
+ start = time.time()
71
+ progress(0, desc = "Preparing data...")
72
+
73
+ if negative_prompt is None:
74
+ negative_prompt = ""
75
+
76
+ if denoising_steps is None:
77
+ denoising_steps = 1000
78
+
79
+ if num_inference_steps is None:
80
+ num_inference_steps = 25
81
+
82
+ if guidance_scale is None:
83
+ guidance_scale = 7
84
+
85
+ if image_guidance_scale is None:
86
+ image_guidance_scale = 1.1
87
+
88
+ if strength is None:
89
+ strength = 0.99
90
+
91
+ if randomize_seed:
92
+ seed = random.randint(0, max_64_bit_int)
93
+
94
+ random.seed(seed)
95
+ #pipe = pipe.manual_seed(seed)
96
+
97
+ input_image = source_img["image"].convert("RGB")
98
+
99
+ original_height, original_width, original_channel = np.array(input_image).shape
100
+ output_width = original_width
101
+ output_height = original_height
102
+
103
+ if uploaded_mask is None:
104
+ mask_image = source_img["mask"].convert("RGB")
105
  else:
106
+ mask_image = uploaded_mask.convert("RGB")
107
+ mask_image = mask_image.resize((original_width, original_height))
108
+
109
+ # Limited to 1 million pixels
110
+ if 1024 * 1024 < output_width * output_height:
111
+ factor = ((1024 * 1024) / (output_width * output_height))**0.5
112
+ process_width = math.floor(output_width * factor)
113
+ process_height = math.floor(output_height * factor)
114
+
115
+ limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  else:
117
+ process_width = output_width
118
+ process_height = output_height
119
+
120
+ limitation = "";
121
+
122
+ # Width and height must be multiple of 8
123
+ if (process_width % 8) != 0 or (process_height % 8) != 0:
124
+ if ((process_width - (process_width % 8) + 8) * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
125
+ process_width = process_width - (process_width % 8) + 8
126
+ process_height = process_height - (process_height % 8) + 8
127
+ elif (process_height % 8) <= (process_width % 8) and ((process_width - (process_width % 8) + 8) * process_height) <= (1024 * 1024):
128
+ process_width = process_width - (process_width % 8) + 8
129
+ process_height = process_height - (process_height % 8)
130
+ elif (process_width % 8) <= (process_height % 8) and (process_width * (process_height - (process_height % 8) + 8)) <= (1024 * 1024):
131
+ process_width = process_width - (process_width % 8)
132
+ process_height = process_height - (process_height % 8) + 8
133
+ else:
134
+ process_width = process_width - (process_width % 8)
135
+ process_height = process_height - (process_height % 8)
136
+
137
+ progress(None, desc = "Processing...")
138
+ output_image = pipe(
139
+ seeds = [seed],
140
+ width = process_width,
141
+ height = process_height,
142
+ prompt = prompt,
143
+ negative_prompt = negative_prompt,
144
+ image = input_image,
145
+ mask_image = mask_image,
146
+ num_inference_steps = num_inference_steps,
147
+ guidance_scale = guidance_scale,
148
+ image_guidance_scale = image_guidance_scale,
149
+ strength = strength,
150
+ denoising_steps = denoising_steps,
151
+ show_progress_bar = True
152
+ ).images[0]
153
 
154
+ if limitation != "":
155
+ output_image = output_image.resize((output_width, output_height))
156
+
157
+ if debug_mode == False:
158
+ input_image = None
159
+ mask_image = None
160
+
161
+ end = time.time()
162
+ secondes = int(end - start)
163
+ minutes = secondes // 60
164
+ secondes = secondes - (minutes * 60)
165
+ hours = minutes // 60
166
+ minutes = minutes - (hours * 60)
167
+ return [
168
+ output_image,
169
+ "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation,
170
+ input_image,
171
+ mask_image
172
+ ]
173
+
174
+ def toggle_debug(is_debug_mode):
175
+ if is_debug_mode:
176
+ return [gr.update(visible = True)] * 2
177
+ else:
178
+ return [gr.update(visible = False)] * 2
179
+
180
+ with gr.Blocks() as interface:
181
+ gr.Markdown(
182
  """
183
+ <p style="text-align: center;"><b><big><big><big>Inpaint</big></big></big></b></p>
184
+ <p style="text-align: center;">Modifies one detail of your image, at any resolution, freely, without account, without watermark, without installation, which can be downloaded</p>
185
+ <br/>
186
+ <br/>
187
+ 🚀 Powered by <i>SDXL 1.0</i> artificial intellingence.
188
+ <br/>
189
+ 🐌 Slow process... ~1 hour.<br>You can duplicate this space on a free account, it works on CPU and should also run on CUDA.<br/>
190
+ <a href='https://huggingface.co/spaces/multimodalart/stable-diffusion-inpainting?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
191
+ <br/>
192
+ ⚖️ You can use, modify and share the generated images but not for commercial uses.
193
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
  """
195
  )
196
+ with gr.Column():
197
+ source_img = gr.Image(label = "Your image", source = "upload", tool = "sketch", type = "pil")
198
+ prompt = gr.Textbox(label = "Prompt", info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = "Describe what you want to see in the entire image")
199
+ with gr.Accordion("Upload a mask", open = False):
200
+ uploaded_mask = gr.Image(label = "Already made mask (black pixels will be preserved, white pixels will be redrawn)", source = "upload", type = "pil")
201
+ with gr.Accordion("Advanced options", open = False):
202
+ negative_prompt = gr.Textbox(label = "Negative prompt", placeholder = "Describe what you do NOT want to see in the entire image", value = "Ugly, malformed, noise, blur, watermark")
203
+ denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
204
+ num_inference_steps = gr.Slider(minimum = 10, maximum = 100, value = 25, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
205
+ guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
206
+ image_guidance_scale = gr.Slider(minimum = 1, value = 1.1, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
207
+ strength = gr.Number(value = 0.99, minimum = 0.01, maximum = 1.0, step = 0.01, label = "Strength", info = "lower=follow the original area, higher=redraw from scratch")
208
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
209
+ seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
210
+ debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results")
211
+
212
+ submit = gr.Button("Inpaint", variant = "primary")
213
+
214
+ inpainted_image = gr.Image(label = "Inpainted image")
215
+ information = gr.Label(label = "Information")
216
+ original_image = gr.Image(label = "Original image", visible = False)
217
+ mask_image = gr.Image(label = "Mask image", visible = False)
218
+
219
+ submit.click(toggle_debug, debug_mode, [
220
+ original_image,
221
+ mask_image
222
+ ], queue = False, show_progress = False).then(check, inputs = [
223
+ source_img,
224
+ prompt,
225
+ uploaded_mask,
226
+ negative_prompt,
227
+ denoising_steps,
228
+ num_inference_steps,
229
+ guidance_scale,
230
+ image_guidance_scale,
231
+ strength,
232
+ randomize_seed,
233
+ seed,
234
+ debug_mode
235
+ ], outputs = [], queue = False, show_progress = False).success(inpaint, inputs = [
236
+ source_img,
237
+ prompt,
238
+ uploaded_mask,
239
+ negative_prompt,
240
+ denoising_steps,
241
+ num_inference_steps,
242
+ guidance_scale,
243
+ image_guidance_scale,
244
+ strength,
245
+ randomize_seed,
246
+ seed,
247
+ debug_mode
248
+ ], outputs = [
249
+ inpainted_image,
250
+ information,
251
+ original_image,
252
+ mask_image
253
+ ], scroll_to_output = True)
254
+
255
+ gr.Examples(
256
+ inputs = [
257
+ source_img,
258
+ prompt,
259
+ uploaded_mask,
260
+ negative_prompt,
261
+ denoising_steps,
262
+ num_inference_steps,
263
+ guidance_scale,
264
+ image_guidance_scale,
265
+ strength,
266
+ randomize_seed,
267
+ seed,
268
+ debug_mode
269
+ ],
270
+ outputs = [
271
+ inpainted_image,
272
+ information,
273
+ original_image,
274
+ mask_image
275
+ ],
276
+ examples = [
277
+ [
278
+ "./Examples/Example1.png",
279
+ "A deer, in a forest landscape, ultrarealistic, realistic, photorealistic, 8k",
280
+ "./Examples/Mask1.webp",
281
+ "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
282
+ 1000,
283
+ 25,
284
+ 7,
285
+ 1.1,
286
+ 0.99,
287
+ True,
288
+ 42,
289
+ False
290
+ ],
291
+ [
292
+ "./Examples/Example3.jpg",
293
+ "An angry old woman, ultrarealistic, realistic, photorealistic, 8k",
294
+ "./Examples/Mask3.gif",
295
+ "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
296
+ 1000,
297
+ 25,
298
+ 7,
299
+ 1.5,
300
+ 0.99,
301
+ True,
302
+ 42,
303
+ False
304
+ ],
305
+ [
306
+ "./Examples/Example4.gif",
307
+ "A laptop, ultrarealistic, realistic, photorealistic, 8k",
308
+ "./Examples/Mask4.bmp",
309
+ "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
310
+ 1000,
311
+ 25,
312
+ 7,
313
+ 1.1,
314
+ 0.99,
315
+ True,
316
+ 42,
317
+ False
318
+ ],
319
+ [
320
+ "./Examples/Example5.bmp",
321
+ "A sand castle, ultrarealistic, realistic, photorealistic, 8k",
322
+ "./Examples/Mask5.png",
323
+ "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
324
+ 1000,
325
+ 50,
326
+ 7,
327
+ 1.5,
328
+ 0.5,
329
+ True,
330
+ 42,
331
+ False
332
+ ],
333
+ [
334
+ "./Examples/Example2.webp",
335
+ "A cat, ultrarealistic, realistic, photorealistic, 8k",
336
+ "./Examples/Mask2.png",
337
+ "Painting, drawing, cartoon, ugly, malformed, noise, blur, watermark",
338
+ 1000,
339
+ 25,
340
+ 7,
341
+ 1.1,
342
+ 0.99,
343
+ True,
344
+ 42,
345
+ False
346
+ ],
347
+ ],
348
+ cache_examples = False,
349
+ )
350
+
351
+ interface.queue().launch()
requirements.txt CHANGED
@@ -1,11 +1,8 @@
1
- --extra-index-url https://download.pytorch.org/whl/cu113
2
- torch
3
  torchvision
4
- diffusers==0.6.0
5
- transformers==4.23.1
 
6
  ftfy
7
- numpy
8
- matplotlib
9
- uuid
10
- opencv-python
11
- git+https://github.com/openai/CLIP.git
 
 
 
1
  torchvision
2
+ diffusers
3
+ transformers
4
+ accelerate
5
  ftfy
6
+ scipy
7
+ imageio
8
+ invisible_watermark