DenseDiffusion / app.py
YunjiKim's picture
Upload 7 files
0ed69a6
import gradio as gr
import numpy as np
import torch
import requests
import random
import os
import sys
import pickle
from PIL import Image
from tqdm.auto import tqdm
from datetime import datetime
import diffusers
from diffusers import DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
import torch.nn.functional as F
from utils import preprocess_mask, process_sketch, process_prompts, process_example
#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
#################################################
#################################################
global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond
sreg = 0
creg = 0
sizereg = 0
COUNT = 0
reg_sizes = {}
creg_maps = {}
sreg_maps = {}
text_cond = 0
device="cuda"
MAX_COLORS = 12
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
variant="fp16").to(device)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
timesteps = pipe.scheduler.timesteps
sp_sz = pipe.unet.sample_size
with open('./valset.pkl', 'rb') as f:
val_prompt = pickle.load(f)
#################################################
#################################################
def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes, text_cond
sa_ = True if encoder_hidden_states is None else False
encoder_hidden_states = text_cond if encoder_hidden_states is not None else hidden_states
if self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
if COUNT/32 < 50*0.3:
dtype = query.dtype
if self.upcast_attention:
query = query.float()
key = key.float()
sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1],
dtype=query.dtype, device=query.device),
query, key.transpose(-1, -2), beta=0, alpha=self.scale)
treg = torch.pow(timesteps[COUNT//32]/1000, 5)
## reg at self-attn
if sa_:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value)
## reg at cross-attn
else:
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
mask = creg_maps[sim.size(1)].repeat(self.heads,1,1)
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):])
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value)
attention_probs = sim.softmax(dim=-1)
attention_probs = attention_probs.to(dtype)
else:
attention_probs = self.get_attention_scores(query, key, attention_mask)
COUNT += 1
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
for _module in pipe.unet.modules():
if _module.__class__.__name__ == "Attention":
_module.__class__.__call__ = mod_forward
#################################################
#################################################
def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts):
global creg, sreg, sizereg
creg, sreg, sizereg = creg_, sreg_, sizereg_
clipped_prompts = prompts[:len(binary_matrixes)]
prompts = [master_prompt] + list(clipped_prompts)
layouts = torch.cat([preprocess_mask(mask_, sp_sz, sp_sz, device) for mask_ in binary_matrixes])
text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
###########################
###### prep for sreg ######
###########################
global sreg_maps, reg_sizes
sreg_maps = {}
reg_sizes = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layouts_s = F.interpolate(layouts,(res, res),mode='nearest')
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
reg_sizes[np.power(res, 2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(res, 2))
sreg_maps[np.power(res, 2)] = layouts_s
###########################
###### prep for creg ######
###########################
pww_maps = torch.zeros(1,77,sp_sz,sp_sz).to(device)
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
try:
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i]
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
break
except:
raise gr.Error("Please check whether every segment prompt is included in the full text !")
return
global creg_maps
creg_maps = {}
for r in range(4):
res = int(sp_sz/np.power(2,r))
layout_c = F.interpolate(pww_maps,(res,res),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1)
creg_maps[np.power(res, 2)] = layout_c
###########################
#### prep for text_emb ####
###########################
global text_cond
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
global COUNT
COUNT = 0
if seed == -1:
latents = torch.randn(bsz,4,sp_sz,sp_sz).to(device)
else:
latents = torch.randn(bsz,4,sp_sz,sp_sz, generator=torch.Generator().manual_seed(seed)).to(device)
image = pipe(prompts[:1]*bsz, latents=latents).images
return(image)
#################################################
#################################################
### define the interface
with gr.Blocks(css=css) as demo:
binary_matrixes = gr.State([])
color_layout = gr.State([])
gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''')
gr.Markdown('''
#### ๐Ÿ˜บ Instruction to generate images ๐Ÿ˜บ <br>
(1) Create the image layout. <br>
(2) Label each segment with a text prompt. <br>
(3) Adjust the full text. The default full text is automatically concatenated from each segment's text. The default one works well, but refineing the full text will further improve the result. <br>
(4) Check the generated images, and tune the hyperparameters if needed. <br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - w<sup>c</sup> : The degree of attention modulation at cross-attention layers. <br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; - w<sup>s</sup> : The degree of attention modulation at self-attention layers. <br>
''')
with gr.Row():
with gr.Box(elem_id="main-image"):
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
button_run = gr.Button("(1) I've finished my sketch ! ๐Ÿ˜บ", elem_id="main_button", interactive=True)
prompts = []
colors = []
color_row = [None] * MAX_COLORS
with gr.Column(visible=False) as post_sketch:
for n in range(MAX_COLORS):
if n == 0 :
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
else:
with gr.Row(visible=False) as color_row[n]:
colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100))
prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
get_genprompt_run = gr.Button("(2) I've finished segment labeling ! ๐Ÿ˜บ", elem_id="prompt_button", interactive=True)
with gr.Column(visible=False) as gen_prompt_vis:
general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True)
with gr.Accordion("(4) Tune the hyperparameters", open=False):
creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1)
sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1)
sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1)
bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=1, step=1)
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1)
final_run_btn = gr.Button("Generate ! ๐Ÿ˜บ")
layout_path = gr.Textbox(label="layout_path", visible=False)
all_prompts = gr.Textbox(label="all_prompts", visible=False)
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height='auto')
button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False)
final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image)
gr.Examples(
examples=[['0.png', '***'.join([val_prompt[0]['textual_condition']] + val_prompt[0]['segment_descriptions']), 381940206],
['1.png', '***'.join([val_prompt[1]['textual_condition']] + val_prompt[1]['segment_descriptions']), 307504592],
['5.png', '***'.join([val_prompt[5]['textual_condition']] + val_prompt[5]['segment_descriptions']), 114972190]],
inputs=[layout_path, all_prompts, seed_],
outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
fn=process_example,
run_on_click=True,
label='๐Ÿ˜บ Examples ๐Ÿ˜บ',
)
demo.load(None, None, None, _js=load_js)
demo.launch(debug=True)