Spaces:
Configuration error
Configuration error
File size: 25,557 Bytes
b78b52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Training Pipeline\n",
"[run_training_pipeline.ipynb](https://github.com/shibing624/MedicalGPT/blob/main/run_training_pipeline.ipynb) | [Open In Colab](https://colab.research.google.com/github/shibing624/MedicalGPT/blob/main/run_training_pipeline.ipynb)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Stage 1: Continue Pretraining\n",
"\n",
"第一阶段:PT(Continue PreTraining)增量预训练,在海量领域文本数据上二次预训练GPT模型,以注入领域知识\n",
"\n",
"| Stage 1: Continue Pretraining | [pretraining.py](https://github.com/shibing624/MedicalGPT/blob/main/pretraining.py) | [run_pt.sh](https://github.com/shibing624/MedicalGPT/blob/main/run_pt.sh) |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 说明:\n",
"以下 notebook/colab 代码为了快速验证训练代码可用,我们使用了小size的生成模型和小样本数据集,实际使用时,需要使用更大的模型和数据集,以获得更好的效果。\n",
"\n",
"1. 生成模型:使用的是Bloom的`bigscience/bloomz-560m`\n",
"2. 数据集:PT阶段使用的是中文天龙八部小说部分文本和英文书籍部分文本,位于`data/pretrain`文件夹"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 配置运行环境\n",
"\n",
"本地执行可注释以下配置环境的命令,colab执行要打开注释,用于配置环境\n",
"\n",
"colab建议使用T4 GPU训练,设置方式:`代码执行程序 -> 更改运行时类型 -> 运行时类型:Python3,硬件加速器:GPU,GPU类型:T4 -> 保存`\n",
"\n",
"步骤:\n",
"1. 下载最新代码到本地\n",
"2. 安装依赖包\n",
"\n",
"依赖包如下,保证最新版本:\n",
"\n",
"```\n",
"loguru\n",
"transformers\n",
"sentencepiece\n",
"datasets\n",
"tensorboard\n",
"tqdm\n",
"peft\n",
"trl\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!git clone --depth 1 https://github.com/shibing624/MedicalGPT.git\n",
"%cd MedicalGPT\n",
"%ls\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stage1 咱们开始吧\n",
"\n",
"训练步骤如下:\n",
"\n",
"1. 确认训练集\n",
"2. 执行训练脚本\n",
"\n",
"训练脚本的执行逻辑如下:\n",
"1. 导入依赖包\n",
"2. 设置参数\n",
"3. 定义各函数并加载训练集\n",
"4. 加载模型和tokenizer\n",
"5. 开始训练并评估\n",
"6. 查看训练结果\n",
"\n",
"**以下参数可以根据你的GPU实际情况修改,当前参数是根据Colab的T4单卡GPU(16GB显存)配置的**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%ls ./data/pretrain/"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python pretraining.py \\\n",
" --model_type bloom \\\n",
" --model_name_or_path bigscience/bloomz-560m \\\n",
" --train_file_dir ./data/pretrain \\\n",
" --validation_file_dir ./data/pretrain \\\n",
" --per_device_train_batch_size 3 \\\n",
" --per_device_eval_batch_size 3 \\\n",
" --do_train \\\n",
" --do_eval \\\n",
" --use_peft True \\\n",
" --seed 42 \\\n",
" --fp16 \\\n",
" --max_train_samples 10000 \\\n",
" --max_eval_samples 10 \\\n",
" --num_train_epochs 1 \\\n",
" --learning_rate 2e-4 \\\n",
" --warmup_ratio 0.05 \\\n",
" --weight_decay 0.01 \\\n",
" --logging_strategy steps \\\n",
" --logging_steps 10 \\\n",
" --eval_steps 50 \\\n",
" --evaluation_strategy steps \\\n",
" --save_steps 500 \\\n",
" --save_strategy steps \\\n",
" --save_total_limit 3 \\\n",
" --gradient_accumulation_steps 1 \\\n",
" --preprocessing_num_workers 1 \\\n",
" --block_size 1024 \\\n",
" --output_dir outputs-pt-v1 \\\n",
" --overwrite_output_dir \\\n",
" --ddp_timeout 30000 \\\n",
" --logging_first_step True \\\n",
" --target_modules all \\\n",
" --lora_rank 8 \\\n",
" --lora_alpha 16 \\\n",
" --lora_dropout 0.05 \\\n",
" --torch_dtype float16 \\\n",
" --device_map auto \\\n",
" --report_to tensorboard \\\n",
" --ddp_find_unused_parameters False \\\n",
" --gradient_checkpointing True"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%ls -lh outputs-pt-v1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"模型训练结果:\n",
"- 使用lora训练模型,则保存的lora权重是`adapter_model.bin`, lora配置文件是`adapter_config.json`,合并到base model的方法见`merge_peft_adapter.py`\n",
"- 日志保存在`output_dir/runs`目录下,可以使用tensorboard查看,启动tensorboard方式如下:`tensorboard --logdir output_dir/runs --host 0.0.0.0 --port 8009`"
]
},
{
"cell_type": "markdown",
"source": [
"lora模型权重合并到base model,合并后的模型保存在`--output_dir`目录下,合并方法如下:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python merge_peft_adapter.py --model_type bloom \\\n",
" --base_model_name_or_path bigscience/bloomz-560m --peft_model_path outputs-pt-v1 --output_dir merged-pt/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh merged-pt/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%cat merged-pt/config.json"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Stage1 增量预训练完成。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"start_time": "2023-06-15T13:56:17.032821Z",
"end_time": "2023-06-15T13:56:17.081153Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"source": [
"# Stage 2: Supervised FineTuning\n",
"\n",
"第二阶段:SFT(Supervised Fine-tuning)有监督微调,构造指令微调数据集,在预训练模型基础上做指令精调,以对齐指令意图\n",
"\n",
"| Stage 2: Supervised Fine-tuning | [supervised_finetuning.py](https://github.com/shibing624/MedicalGPT/blob/main/supervised_finetuning.py) | [run_sft.sh](https://github.com/shibing624/MedicalGPT/blob/main/run_sft.sh) |"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"#### 说明:\n",
"以下 notebook/colab 代码为了快速验证训练代码可用,我们使用了小size的生成模型和小样本数据集,实际使用时,需要使用更大的模型和数据集,以获得更好的效果。\n",
"\n",
"1. 生成模型:使用的是Bloom的`bigscience/bloomz-560m` 或者 Stage1得到的预训练模型\n",
"2. 数据集:SFT阶段使用的是使用的是Belle的1千条抽样数据,位于`data/finetune`文件夹"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Stage2 咱们开始吧\n",
"\n",
"训练步骤如下:\n",
"\n",
"1. 确认训练集\n",
"2. 执行训练脚本\n",
"\n",
"训练脚本的执行逻辑如下:\n",
"1. 导入依赖包\n",
"2. 设置参数\n",
"3. 定义各函数并加载训练集\n",
"4. 加载模型和tokenizer\n",
"5. 开始训练并评估\n",
"6. 查看训练结果"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls ./data/finetune"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-06-15T13:58:38.778132Z",
"end_time": "2023-06-15T13:58:38.966506Z"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python supervised_finetuning.py \\\n",
" --model_type bloom \\\n",
" --model_name_or_path merged-pt \\\n",
" --train_file_dir ./data/finetune \\\n",
" --validation_file_dir ./data/finetune \\\n",
" --per_device_train_batch_size 4 \\\n",
" --per_device_eval_batch_size 4 \\\n",
" --do_train \\\n",
" --do_eval \\\n",
" --use_peft True \\\n",
" --fp16 \\\n",
" --max_train_samples 1000 \\\n",
" --max_eval_samples 10 \\\n",
" --num_train_epochs 1 \\\n",
" --learning_rate 2e-5 \\\n",
" --warmup_ratio 0.05 \\\n",
" --weight_decay 0.05 \\\n",
" --logging_strategy steps \\\n",
" --logging_steps 10 \\\n",
" --eval_steps 50 \\\n",
" --evaluation_strategy steps \\\n",
" --save_steps 500 \\\n",
" --save_strategy steps \\\n",
" --save_total_limit 3 \\\n",
" --gradient_accumulation_steps 1 \\\n",
" --preprocessing_num_workers 1 \\\n",
" --output_dir outputs-sft-v1 \\\n",
" --overwrite_output_dir \\\n",
" --ddp_timeout 30000 \\\n",
" --logging_first_step True \\\n",
" --target_modules all \\\n",
" --lora_rank 8 \\\n",
" --lora_alpha 16 \\\n",
" --lora_dropout 0.05 \\\n",
" --torch_dtype float16 \\\n",
" --device_map auto \\\n",
" --report_to tensorboard \\\n",
" --ddp_find_unused_parameters False \\\n",
" --gradient_checkpointing True"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh outputs-sft-v1"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"模型训练结果:\n",
"- 使用lora训练模型,则保存的lora权重是`adapter_model.bin`, lora配置文件是`adapter_config.json`,合并到base model的方法见`merge_peft_adapter.py`\n",
"- 日志保存在`output_dir/runs`目录下,可以使用tensorboard查看,启动tensorboard方式如下:`tensorboard --logdir output_dir/runs --host 0.0.0.0 --port 8009`"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"lora模型权重合并到base model,合并后的模型保存在`--output_dir`目录下,合并方法如下:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python merge_peft_adapter.py --model_type bloom \\\n",
" --base_model_name_or_path merged-pt --peft_model_path outputs-sft-v1 --output_dir merged-sft/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh merged-sft/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%cat merged-sft/config.json"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"Stage2 SFT训练完成。"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-06-15T14:07:40.731186Z",
"end_time": "2023-06-15T14:07:40.752635Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"# Stage 3: Reward Modeling\n",
"\n",
"第三阶段:RM(Reward Model)奖励模型建模,构造人类偏好排序数据集,训练奖励模型,用来对齐人类偏好,主要是\"HHH\"原则,具体是\"helpful, honest, harmless\"\n",
"\n",
"| Stage 3: Reward Modeling | [reward_modeling.py](https://github.com/shibing624/MedicalGPT/blob/main/reward_modeling.py) | [run_rm.sh](https://github.com/shibing624/MedicalGPT/blob/main/run_rm.sh) |"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"#### 说明:\n",
"以下 notebook/colab 代码为了快速验证训练代码可用,我们使用了小size的生成模型和小样本数据集,实际使用时,需要使用更大的模型和数据集,以获得更好的效果。\n",
"\n",
"1. 生成模型:使用的是Bloom的`bigscience/bloomz-560m` 或者 Stage2得到的SFT模型\n",
"2. 数据集:RM阶段使用的是医疗reward数据,抽样了500条,位于`data/reward`文件夹"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Stage3 咱们开始吧\n",
"\n",
"训练步骤如下:\n",
"\n",
"1. 确认训练集\n",
"2. 执行训练脚本\n",
"\n",
"训练脚本的执行逻辑如下:\n",
"1. 导入依赖包\n",
"2. 设置参数\n",
"3. 定义各函数并加载训练集\n",
"4. 加载模型和tokenizer\n",
"5. 开始训练并评估\n",
"6. 查看训练结果"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls ./data/reward/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python reward_modeling.py \\\n",
" --model_type bloom \\\n",
" --model_name_or_path merged-sft \\\n",
" --train_file_dir ./data/reward \\\n",
" --validation_file_dir ./data/reward \\\n",
" --per_device_train_batch_size 3 \\\n",
" --per_device_eval_batch_size 1 \\\n",
" --do_train \\\n",
" --use_peft True \\\n",
" --seed 42 \\\n",
" --max_train_samples 1000 \\\n",
" --max_eval_samples 10 \\\n",
" --num_train_epochs 1 \\\n",
" --learning_rate 2e-5 \\\n",
" --warmup_ratio 0.05 \\\n",
" --weight_decay 0.001 \\\n",
" --logging_strategy steps \\\n",
" --logging_steps 10 \\\n",
" --eval_steps 50 \\\n",
" --evaluation_strategy steps \\\n",
" --save_steps 500 \\\n",
" --save_strategy steps \\\n",
" --save_total_limit 3 \\\n",
" --max_source_length 256 \\\n",
" --max_target_length 256 \\\n",
" --output_dir outputs-rm-v1 \\\n",
" --overwrite_output_dir \\\n",
" --ddp_timeout 30000 \\\n",
" --logging_first_step True \\\n",
" --target_modules all \\\n",
" --lora_rank 8 \\\n",
" --lora_alpha 16 \\\n",
" --lora_dropout 0.05 \\\n",
" --torch_dtype float32 \\\n",
" --device_map auto \\\n",
" --report_to tensorboard \\\n",
" --ddp_find_unused_parameters False \\\n",
" --remove_unused_columns False \\\n",
" --gradient_checkpointing True"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh outputs-rm-v1"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"模型训练结果:\n",
"- 使用lora训练模型,则保存的lora权重是`adapter_model.bin`, lora配置文件是`adapter_config.json`,合并到base model的方法见`merge_peft_adapter.py`\n",
"- 日志保存在`output_dir/runs`目录下,可以使用tensorboard查看,启动tensorboard方式如下:`tensorboard --logdir output_dir/runs --host 0.0.0.0 --port 8009`"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"lora模型权重合并到base model,合并后的模型保存在`--output_dir`目录下,合并方法如下:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python merge_peft_adapter.py --model_type bloom \\\n",
" --base_model_name_or_path merged-sft --peft_model_path outputs-rm-v1 --output_dir merged-rm/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh merged-rm/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%cat merged-rm/config.json"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"Stage3 奖励建模第一次训练完成。"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-06-15T14:12:09.464881Z",
"end_time": "2023-06-15T14:12:09.472414Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"# Stage 4: Reinforcement Learning Training\n",
"\n",
"第四阶段:RL(Reinforcement Learning)基于人类反馈的强化学习(RLHF),用奖励模型来训练SFT模型,生成模型使用奖励或惩罚来更新其策略,以便生成更高质量、更符合人类偏好的文本\n",
"\n",
"| Stage 4: Reinforcement Learning | [rl_training.py](https://github.com/shibing624/MedicalGPT/blob/main/rl_training.py) | [run_rl.sh](https://github.com/shibing624/MedicalGPT/blob/main/run_rl.sh) |\n"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"#### 说明:\n",
"以下 notebook/colab 代码为了快速验证训练代码可用,我们使用了小size的生成模型、奖励模型和小样本数据集,实际使用时,需要使用更大的模型和数据集,以获得更好的效果。\n",
"\n",
"1. 生成模型:使用的是Bloom的`bigscience/bloomz-560m` 或者 Stage2得到的SFT模型\n",
"2. 奖励模型:使用的是`OpenAssistant/reward-model-deberta-v3-large-v2` 或者 Stage3得到的BERT类或者GPT类奖励模型\n",
"3. 数据集:RL阶段的数据可以复用SFT的数据集,使用的是Belle的1千条抽样数据,位于`data/finetune`文件夹"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"## Stage4 咱们开始吧\n",
"\n",
"训练步骤如下:\n",
"\n",
"1. 确认训练集\n",
"2. 执行训练脚本\n",
"\n",
"训练脚本的执行逻辑如下:\n",
"1. 导入依赖包\n",
"2. 设置参数\n",
"3. 定义各函数并加载训练集\n",
"4. 加载生成模型和tokenizer,加载奖励模型和其tokenizer\n",
"5. 开始训练并评估\n",
"6. 查看训练结果\n",
"\n",
"以下参数可以根据你的GPU实际情况修改,当前参数是根据Colab的T4单卡GPU(16GB显存)配置的。"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls ./data/finetune/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python rl_training.py \\\n",
" --model_type bloom \\\n",
" --model_name_or_path merged-sft \\\n",
" --reward_model_name_or_path merged-rm \\\n",
" --torch_dtype float16 \\\n",
" --device_map auto \\\n",
" --train_file_dir ./data/finetune \\\n",
" --validation_file_dir ./data/finetune \\\n",
" --batch_size 4 \\\n",
" --max_source_length 256 \\\n",
" --max_target_length 256 \\\n",
" --max_train_samples 1000 \\\n",
" --use_peft True \\\n",
" --lora_rank 8 \\\n",
" --lora_alpha 16 \\\n",
" --lora_dropout 0.05 \\\n",
" --do_train \\\n",
" --max_steps 64 \\\n",
" --learning_rate 1e-5 \\\n",
" --save_steps 50 \\\n",
" --output_dir outputs-rl-v1 \\\n",
" --early_stopping True \\\n",
" --target_kl 0.1 \\\n",
" --reward_baseline 0.0"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh outputs-rl-v1"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"模型训练结果:\n",
"- 使用lora训练模型,则保存的lora权重是`adapter_model.bin`, lora配置文件是`adapter_config.json`,合并到base model的方法见`merge_peft_adapter.py`\n",
"- 日志保存在`output_dir/trl`目录下,可以使用tensorboard查看,启动tensorboard方式如下:`tensorboard --logdir output_dir/trl --host 0.0.0.0 --port 8009`"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"lora模型权重合并到base model,合并后的模型保存在`--output_dir`目录下,合并方法如下:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python merge_peft_adapter.py --model_type bloom \\\n",
" --base_model_name_or_path merged-sft --peft_model_path outputs-rl-v1 --output_dir merged-rl/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%ls -lh merged-rl/"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"%cat merged-rl/config.json"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"Stage4 RL第一次训练完成。\n",
"\n",
"**至此一个完整的4阶段训练流程演示完成。**"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [
"实际操作中Stage3和Stage4可以反复多次,直到RL得到的最后模型满足评估要求。\n",
"\n",
"RLHF过程可以把SFT模型当成一个初始化模型,RM模型当做指导老师,使用RL(PPO)调教SFT模型生成指导老师最满意的结果,如果小学老师满意了,我们就再训练一个中学老师,继续指导,中学老师满意了,就训练一个大学老师,这样不断迭代,使得生成模型的质量达到甚至超过人工撰写的天花板。\n",
"\n",
"RLHF训练不易,此项目提供给大家一种实现的方法和参考,希望抛砖引玉,共同促进中文开源LLM发展。"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-06-26T12:34:29.620609Z",
"end_time": "2023-06-26T12:34:29.658428Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"# Test"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"!python inference.py --model_type bloom --base_model merged-rl --interactive"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
"start_time": "2023-06-26T12:34:47.802087Z",
"end_time": "2023-06-26T12:35:00.864463Z"
}
}
},
{
"cell_type": "markdown",
"source": [
"Input:介绍下南京\n",
"Response: 南京市位于江苏省西南部,是全国首批历史文化名城、国家中心城市和自由贸易试验区。\n",
"\n",
"完。\n"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"language": "python",
"display_name": "Python 3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"vscode": {
"interpreter": {
"hash": "f34eed0bebedfc4b6ee51ced43d2c030fe3b92f13c149d072205ca200a67b1ec"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|