import gradio as gr from huggingface_hub import InferenceClient import os # Ensure the required library is installed os.system("pip install minijinja gradio huggingface_hub") # Initialize the client with the desired model client = InferenceClient("meta-llama/Meta-Llama-3.1-8B") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [system_message] for val in history: if val[0]: messages.append(val[0]) if val[1]: messages.append(val[1]) messages.append(message) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error: {str(e)}" def autocomplete(prompt, max_tokens, temperature, top_p): messages = [prompt] response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error: {str(e)}" # Create the Gradio interface demo = gr.Blocks() with demo: gr.Markdown("# Chat with Meta-Llama") with gr.Tab("Chat Interface"): chatbot = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Tab("Notebook Interface"): gr.Markdown("## Notebook Interface with Autocomplete") prompt = gr.Textbox(label="Enter your text") output = gr.Textbox(label="Autocompleted Text", interactive=False) max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") autocomplete_button = gr.Button("Autocomplete") autocomplete_button.click( autocomplete, inputs=[prompt, max_tokens, temperature, top_p], outputs=output ) if __name__ == "__main__": demo.launch()