niknikita commited on
Commit
7895958
1 Parent(s): 7dbbadd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -22
app.py CHANGED
@@ -36,29 +36,7 @@ def get_top95(y_predict, convert_target):
36
  # Creating the customized model, by adding a drop out and a dense layer on top of distil bert to get the final output for the model.
37
  from transformers import DistilBertModel, DistilBertTokenizer
38
 
39
- class DistillBERTClass(torch.nn.Module):
40
- def __init__(self):
41
- super(DistillBERTClass, self).__init__()
42
- self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
43
- self.pre_classifier = torch.nn.Linear(768, 768)
44
- self.dropout = torch.nn.Dropout(0.3)
45
- self.classifier = torch.nn.Linear(768, 8)
46
 
47
- def forward(self, input_ids, attention_mask):
48
- output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
49
- hidden_state = output_1[0]
50
- pooler = hidden_state[:, 0]
51
- pooler = self.pre_classifier(pooler)
52
- pooler = torch.nn.ReLU()(pooler)
53
- pooler = self.dropout(pooler)
54
- output = self.classifier(pooler)
55
- return output
56
-
57
-
58
- model = DistillBERTClass()
59
- LEARNING_RATE = 1e-05
60
-
61
- optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
62
  model = torch.load("pytorch_distilbert_news (3).bin", map_location=torch.device('cpu'))
63
  # model.load_state_dict(checkpoint['model'])
64
  # optimizer.load_state_dict(checkpoint['opt'])
@@ -90,6 +68,7 @@ def get_predict(title, abstract):
90
  attention_mask=inputs['attention_mask'],
91
  )
92
  logits = outputs[0]
 
93
  y_predict = torch.nn.functional.softmax(logits).cpu().detach().numpy()
94
  file_path = "sample.json"
95
 
 
36
  # Creating the customized model, by adding a drop out and a dense layer on top of distil bert to get the final output for the model.
37
  from transformers import DistilBertModel, DistilBertTokenizer
38
 
 
 
 
 
 
 
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  model = torch.load("pytorch_distilbert_news (3).bin", map_location=torch.device('cpu'))
41
  # model.load_state_dict(checkpoint['model'])
42
  # optimizer.load_state_dict(checkpoint['opt'])
 
68
  attention_mask=inputs['attention_mask'],
69
  )
70
  logits = outputs[0]
71
+ print(logits)
72
  y_predict = torch.nn.functional.softmax(logits).cpu().detach().numpy()
73
  file_path = "sample.json"
74