import streamlit as st from torch.utils.data import Dataset, DataLoader import torch from sklearn.model_selection import train_test_split from transformers import get_linear_schedule_with_warmup, AdamW from torch.cuda.amp import autocast, GradScaler from transformers import DistilBertForSequenceClassification, DistilBertTokenizer, \ BigBirdPegasusForSequenceClassification, BigBirdTokenizer from transformers import pipeline from torch.utils.data import TensorDataset, random_split, DataLoader, RandomSampler, SequentialSampler from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score import streamlit as st from transformers import DistilBertModel, DistilBertTokenizer import pandas as pd import json import ast from scipy import stats import numpy as np import time import datetime # def get_top95(y_predict, convert_target): lst_labels = [] tuple_arr = tuple((idx, val) for idx, val in enumerate(y_predict)) sort_y = sorted(tuple_arr, key=lambda x: x[1], reverse=True) cumsum = 0 for key, prob in sort_y: cumsum += prob print(prob) lst_labels.append(convert_target[str(key)]) if cumsum > 0.95: break return lst_labels class DistillBERTClass(torch.nn.Module): def __init__(self): super(DistillBERTClass, self).__init__() self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased") self.pre_classifier = torch.nn.Linear(768, 768) self.dropout = torch.nn.Dropout(0.3) self.classifier = torch.nn.Linear(768, 8) def forward(self, input_ids, attention_mask): output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask) hidden_state = output_1[0] pooler = hidden_state[:, 0] pooler = self.pre_classifier(pooler) pooler = torch.nn.ReLU()(pooler) pooler = self.dropout(pooler) output = self.classifier(pooler) return output model = DistillBERTClass() LEARNING_RATE = 1e-05 optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE) model = torch.load("bert_distilbert.bin", map_location=torch.device('cpu')) def get_predict(title, abstract): tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') inputs = tokenizer(abstract, title, return_tensors="pt") outputs = model( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], ) logits = outputs[0] print(logits) y_predict = torch.nn.functional.softmax(logits).cpu().detach().numpy() file_path = "sample.json" with open(file_path, 'r') as json_file: decode_target = json.load(json_file) return get_top95(y_predict, decode_target) st.markdown("Классификатор статей") # ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter title = st.text_area("Title", key=1) abstract = st.text_area("Abstract", key=2) # ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент # from transformers import pipeline # pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") # raw_predictions = pipe(text) # тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost st.markdown(f"It's prediction: {get_predict(title, abstract)}")