nisten's picture
Update app.py
a622fef verified
import gradio as gr
import spaces
import torch
import subprocess
import sys
# Install required packages
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "--force-reinstall", "--no-deps", "einops", "accelerate", "torch", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from transformers import OlmoeForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
model_name = "allenai/OLMoE-1B-7B-0924-Instruct"
# Wrap model loading in a try-except block to handle potential errors
try:
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = OlmoeForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16, # Using float16 for lower precision
low_cpu_mem_usage=True,
device_map="auto",
_attn_implementation="flash_attention_2" # Enable Flash Attention 2
).to(DEVICE)
model.gradient_checkpointing_enable() # Enable gradient checkpointing
tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
print(f"Error loading model: {e}")
model = None
tokenizer = None
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
"who is stuck inside a step function machine and remembers and counts everything he says "
"while always answering questions in full first principles analysis type of thinking "
"without using any analogies and always showing full working code or output in his answers.")
@spaces.GPU
def generate_response(message, history, temperature, max_new_tokens):
if model is None or tokenizer is None:
yield "Model or tokenizer not loaded properly. Please check the logs."
return
messages = [{"role": "system", "content": system_prompt}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
try:
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
generation_kwargs = dict(
inputs=inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text.strip()
thread.join()
except RuntimeError as e:
if "CUDA out of memory" in str(e):
yield "GPU memory exceeded. Try reducing the max tokens or using a smaller model."
else:
yield f"An error occurred: {str(e)}"
except Exception as e:
yield f"An unexpected error occurred: {str(e)}"
css = """
#output {
height: 1000px;
overflow: auto;
border: 2px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# Nisten's Karpathy Chatbot with OSS OLMoE (Now with Flash Attention 2!)")
chatbot = gr.Chatbot(elem_id="output")
msg = gr.Textbox(label="Meow")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
max_new_tokens = gr.Slider(minimum=50, maximum=4000, value=2000, step=50, label="Max New Tokens")
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, temp, max_tokens):
user_message = history[-1][0]
bot_message = ""
for token in generate_response(user_message, history[:-1], temp, max_tokens):
bot_message = token
history[-1][1] = bot_message
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, temperature, max_new_tokens], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue(api_open=True, max_size=10) # Limiting queue size
demo.launch(debug=True, show_api=True, share=False) # Disabled sharing for security