import sys import os import re import json import time import shutil import numpy as np import gradio as gr from datetime import datetime from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool from PIL import Image, ImageDraw from skimage.measure import ransac import matplotlib.pyplot as plt from modules.latex2bbox_color import latex2bbox_color from modules.tokenize_latex.tokenize_latex import tokenize_latex from modules.visual_matcher import HungarianMatcher, SimpleAffineTransform DATA_ROOT = "output" def gen_color_list(num=10, gap=15): num += 1 single_num = 255 // gap + 1 max_num = single_num ** 3 num = min(num, max_num) color_list = [] for idx in range(num): R = idx // single_num**2 GB = idx % single_num**2 G = GB // single_num B = GB % single_num color_list.append((R*gap, G*gap, B*gap)) return color_list[1:] def process_latex(groundtruths, predictions, user_id="test"): data_root = DATA_ROOT temp_dir = os.path.join(data_root, "temp_dir") data_root = os.path.join(data_root, user_id) output_dir_info = {} input_args = [] for subset, latex_list in zip(['gt', 'pred'], [groundtruths, predictions]): sub_temp_dir = os.path.join(temp_dir, f"{user_id}_{subset}") os.makedirs(sub_temp_dir, exist_ok=True) output_path = os.path.join(data_root, subset) output_dir_info[output_path] = [] os.makedirs(os.path.join(output_path, 'bbox'), exist_ok=True) os.makedirs(os.path.join(output_path, 'vis'), exist_ok=True) total_color_list = gen_color_list(num=5800) for idx, latex in enumerate(latex_list): basename = f"sample_{idx}" input_arg = latex, basename, output_path, sub_temp_dir, total_color_list a = time.time() latex2bbox_color(input_arg) b = time.time() for subset in ['gt', 'pred']: shutil.rmtree(os.path.join(temp_dir, f"{user_id}_{subset}")) def update_inliers(ori_inliers, sub_inliers): inliers = np.copy(ori_inliers) sub_idx = -1 for idx in range(len(ori_inliers)): if ori_inliers[idx] == False: sub_idx += 1 if sub_inliers[sub_idx] == True: inliers[idx] = True return inliers def reshape_inliers(ori_inliers, sub_inliers): inliers = np.copy(ori_inliers) sub_idx = -1 for idx in range(len(ori_inliers)): if ori_inliers[idx] == False: sub_idx += 1 if sub_inliers[sub_idx] == True: inliers[idx] = True else: inliers[idx] = False return inliers def evaluation(user_id="test"): data_root = DATA_ROOT data_root = os.path.join(data_root, user_id) gt_box_dir = os.path.join(data_root, "gt") pred_box_dir = os.path.join(data_root, "pred") match_vis_dir = os.path.join(data_root, "vis_match") os.makedirs(match_vis_dir, exist_ok=True) max_iter = 3 min_samples = 3 residual_threshold = 25 max_trials = 50 metrics_per_img = {} gt_basename_list = [item.split(".")[0] for item in os.listdir(os.path.join(gt_box_dir, 'bbox'))] for basename in gt_basename_list: gt_valid, pred_valid = True, True if not os.path.exists(os.path.join(gt_box_dir, 'bbox', basename+".jsonl")): gt_valid = False else: with open(os.path.join(gt_box_dir, 'bbox', basename+".jsonl"), 'r') as f: box_gt = [] for line in f: info = json.loads(line) if info['bbox']: box_gt.append(info) if not box_gt: gt_valid = False if not gt_valid: continue if not os.path.exists(os.path.join(pred_box_dir, 'bbox', basename+".jsonl")): pred_valid = False else: with open(os.path.join(pred_box_dir, 'bbox', basename+".jsonl"), 'r') as f: box_pred = [] for line in f: info = json.loads(line) if info['bbox']: box_pred.append(info) if not box_pred: pred_valid = False if not pred_valid: metrics_per_img[basename] = { "recall": 0, "precision": 0, "F1_score": 0, } continue gt_img_path = os.path.join(gt_box_dir, 'vis', basename+"_base.png") pred_img_path = os.path.join(pred_box_dir, 'vis', basename+"_base.png") img_gt = Image.open(gt_img_path) img_pred = Image.open(pred_img_path) matcher = HungarianMatcher() matched_idxes = matcher(box_gt, box_pred, img_gt.size, img_pred.size) src = [] dst = [] for (idx1, idx2) in matched_idxes: x1min, y1min, x1max, y1max = box_gt[idx1]['bbox'] x2min, y2min, x2max, y2max = box_pred[idx2]['bbox'] x1_c, y1_c = float((x1min+x1max)/2), float((y1min+y1max)/2) x2_c, y2_c = float((x2min+x2max)/2), float((y2min+y2max)/2) src.append([y1_c, x1_c]) dst.append([y2_c, x2_c]) src = np.array(src) dst = np.array(dst) if src.shape[0] <= min_samples: inliers = np.array([True for _ in matched_idxes]) else: inliers = np.array([False for _ in matched_idxes]) for i in range(max_iter): if src[inliers==False].shape[0] <= min_samples: break model, inliers_1 = ransac((src[inliers==False], dst[inliers==False]), SimpleAffineTransform, min_samples=min_samples, residual_threshold=residual_threshold, max_trials=max_trials) if inliers_1 is not None and inliers_1.any(): inliers = update_inliers(inliers, inliers_1) else: break if len(inliers[inliers==True]) >= len(matched_idxes): break for idx, (a,b) in enumerate(matched_idxes): if inliers[idx] == True and matcher.cost['token'][a, b] == 1: inliers[idx] = False final_match_num = len(inliers[inliers==True]) recall = round(final_match_num/(len(box_gt)), 3) precision = round(final_match_num/(len(box_pred)), 3) F1_score = round(2*final_match_num/(len(box_gt)+len(box_pred)), 3) metrics_per_img[basename] = { "recall": recall, "precision": precision, "F1_score": F1_score, } if True: gap = 5 W1, H1 = img_gt.size W2, H2 = img_pred.size H = H1 + H2 + gap W = max(W1, W2) vis_img = Image.new('RGB', (W, H), (255, 255, 255)) vis_img.paste(img_gt, (0, 0)) vis_img.paste(Image.new('RGB', (W, gap), (0, 150, 200)), (0, H1)) vis_img.paste(img_pred, (0, H1+gap)) match_img = vis_img.copy() match_draw = ImageDraw.Draw(match_img) gt_matched_idx = { a: flag for (a,b), flag in zip(matched_idxes, inliers) } pred_matched_idx = { b: flag for (a,b), flag in zip(matched_idxes, inliers) } for idx, box in enumerate(box_gt): if idx in gt_matched_idx and gt_matched_idx[idx]==True: color = "green" else: color = "red" x_min, y_min, x_max, y_max = box['bbox'] match_draw.rectangle([x_min-1, y_min-1, x_max+1, y_max+1], fill=None, outline=color, width=2) for idx, box in enumerate(box_pred): if idx in pred_matched_idx and pred_matched_idx[idx]==True: color = "green" else: color = "red" x_min, y_min, x_max, y_max = box['bbox'] match_draw.rectangle([x_min-1, y_min-1+H1+gap, x_max+1, y_max+1+H1+gap], fill=None, outline=color, width=2) vis_img.save(os.path.join(match_vis_dir, basename+"_base.png")) if W < 500: padding = (500 - W)//2 + 1 reshape_match_img = Image.new('RGB', (500, H), (255, 255, 255)) reshape_match_img.paste(match_img, (padding, 0)) reshape_match_img.paste(Image.new('RGB', (500, gap), (0, 150, 200)), (0, H1)) reshape_match_img.save(os.path.join(match_vis_dir, basename+".png")) else: match_img.save(os.path.join(match_vis_dir, basename+".png")) acc_list = [val['F1_score'] for _, val in metrics_per_img.items()] metrics_res = { "mean_score": round(np.mean(acc_list), 3), "details": metrics_per_img } metric_res_path = os.path.join(data_root, "metrics_res.json") with open(metric_res_path, "w") as f: f.write(json.dumps(metrics_res, indent=2)) return metrics_res, metric_res_path, match_vis_dir def calculate_metric_single(groundtruth, prediction): user_id = datetime.now().strftime('%Y%m%d-%H%M%S') process_latex([groundtruth], [prediction], user_id) metrics_res, metric_res_path, match_vis_dir = evaluation(user_id) basename = "sample_0" image_path = os.path.join(match_vis_dir, basename+".png") sample = metrics_res["details"][basename] score = sample['F1_score'] recall = sample['recall'] precision = sample['precision'] return score, recall, precision, gr.Image(image_path) def calculate_metric_batch(json_input): user_id = datetime.now().strftime('%Y%m%d-%H%M%S') with open(json_input.name, "r") as f: input_data = json.load(f) groundtruths = [] predictions = [] for item in input_data: groundtruths.append(item['gt']) predictions.append(item['pred']) process_latex(groundtruths, predictions, user_id) metrics_res, metric_res_path, match_vis_dir = evaluation(user_id) return metric_res_path def gradio_reset_single(): return gr.update(value=None, placeholder='type gt latex code here'), gr.update(value=None, placeholder='type pred latex code here'), \ gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None) def gradio_reset_batch(): return gr.update(value=None), gr.update(value=None) def select_example1(): gt = "y = 2x + 3z" pred = "y = 2z + 3x" return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here') def select_example2(): gt = "r = \\frac { \\alpha } { \\beta } \\vert \\sin \\beta \\left( \\sigma _ { 1 } \\pm \\sigma _ { 2 } \\right) \\vert" pred = "r={\\frac{\\alpha}{\\beta}}|\\sin\\beta\\left(\\sigma_{2}+\\sigma_{1}\\right)|" return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here') def select_example3(): gt = "\\begin{array} { r l r } & { } & { \\mathbf { J } _ { L } = \\left( \\begin{array} { c c } { 0 } & { 0 } \\\\ { v _ { n } } & { 0 } \\end{array} \\right) , ~ \\mathbf { J } _ { R } = \\left( \\begin{array} { c c } { u _ { n - 1 } } & { 0 } \\\\ { 0 } & { 0 } \\end{array} \\right) , ~ } \\\\ & { } & {\\mathbf { K } = \\left( \\begin{array} { c c } { V _ { n - 1 } } & { u _ { n } } \\\\ { v _ { n - 1 } } & { V _ { n } } \\end{array} \\right) , } \\end{array}" pred = "\\mathbf{J}_{U}={\\left(\\begin{array}{l l}{0}&{0}\\\\ {v_{n}}&{0}\\end{array}\\right)}\\,,\\ \\mathbf{J}_{R}={\\left(\\begin{array}{l l}{u_{n-1}}&{0}\\\\ {0}&{0}\\end{array}\\right)}\\,,\\mathbf{K}={\\left(\\begin{array}{l l}{V_{n-1}}&{u_{n}}\\\\ {v_{n-1}}&{V_{n}}\\end{array}\\right)}\\,," return gr.update(value=gt, placeholder='type gt latex code here'), gr.update(value=pred, placeholder='type pred latex code here') with open("header.html", "r") as file: header = file.read() if __name__ == "__main__": # title = """

CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation

""" with gr.Blocks() as demo: gr.HTML(header) # gr.Button(value="Quick Try: type latex code of gt and pred, get metrics and visualization.", interactive=False, variant="primary") with gr.Row(): with gr.Column(): gt_input = gr.Textbox(label='gt', placeholder='type gt latex code here', interactive=True) pred_input = gr.Textbox(label='pred', placeholder='type pred latex code here', interactive=True) with gr.Row(): clear_single = gr.Button("Clear") submit_single = gr.Button(value="Submit", interactive=True, variant="primary") with gr.Accordion("Examples:"): with gr.Row(): example1 = gr.Button("Example A(short)") example2 = gr.Button("Example B(middle)") example3 = gr.Button("Example C(long)") with gr.Column(): with gr.Row(): score_output = gr.Number(label="F1 Score", interactive=False) recall_output = gr.Number(label="Recall", interactive=False) recision_output = gr.Number(label="Precision", interactive=False) gr.Button(value="Visualization (green bbox means correcttlly matched, red bbox means missed or wrong.)", interactive=False) vis_output = gr.Image(label=" ", interactive=False) example1.click(select_example1, inputs=None, outputs=[gt_input, pred_input]) example2.click(select_example2, inputs=None, outputs=[gt_input, pred_input]) example3.click(select_example3, inputs=None, outputs=[gt_input, pred_input]) clear_single.click(gradio_reset_single, inputs=None, outputs=[gt_input, pred_input, score_output, recall_output, recision_output, vis_output]) submit_single.click(calculate_metric_single, inputs=[gt_input, pred_input], outputs=[score_output, recall_output, recision_output, vis_output]) # gr.Button(value="Batch Run: upload a json file and batch processing, this may take some times according to your latex amount and length.", interactive=False, variant="primary") # with gr.Row(): # with gr.Column(): # json_input = gr.File(label="Input Json", file_types=[".json"]) # json_example = gr.File(label="Input Example", value="assets/example/input_example.json") # with gr.Row(): # clear_batch = gr.Button("Clear") # submit_batch = gr.Button(value="Submit", interactive=True, variant="primary") # metric_output = gr.File(label="Output Metrics") # clear_batch.click(gradio_reset_batch, inputs=None, outputs=[json_input, metric_output]) # submit_batch.click(calculate_metric_batch, inputs=[json_input], outputs=[metric_output]) demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)