Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import list_models | |
import plotly.express as px | |
def get_plots(task_df): | |
grouped_df = task_df[['total_gpu_energy', 'model']].groupby('model').mean().sort_values('total_gpu_energy',ascending = False) | |
grouped_df = grouped_df.reset_index() | |
grouped_df['model'] = grouped_df['model'].str.split('/').str[-1] | |
grouped_df['task'] = 'text_classification' | |
grouped_df['total_gpu_energy (Wh)'] = grouped_df['total_gpu_energy']*1000 | |
grouped_df['energy_star'] = pd.cut(grouped_df['total_gpu_energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) | |
grouped_df = px.scatter(grouped_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"}) | |
return grouped_df | |
# %% app.ipynb 3 | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
"""# Energy Star Leaderboard | |
TODO """ | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text Generation π¬"): | |
with gr.Row(): | |
animal_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Image Generation π·"): | |
with gr.Row(): | |
science_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Text Classification π"): | |
with gr.Row(): | |
plot = gr.Plot(get_plots('data/text_classification.csv')) | |
with gr.TabItem("Image Classification πΌοΈ"): | |
with gr.Row(): | |
landscape_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
with gr.TabItem("Extractive QA β"): | |
with gr.Row(): | |
wildcard_data = gr.components.Dataframe( | |
type="pandas", datatype=["number", "markdown", "markdown", "number"] | |
) | |
demo.launch() | |