File size: 8,742 Bytes
d60dac5
9d25320
cebfd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d25320
 
 
5fd5c1f
6ec5095
e506679
9d25320
 
 
 
 
 
 
 
2e2d510
 
 
 
 
 
 
 
 
 
 
 
 
 
9d25320
2e2d510
 
 
 
 
 
 
 
e506679
cebfd3c
9d25320
 
cebfd3c
 
 
 
 
 
 
 
 
 
 
2e2d510
cebfd3c
 
 
 
9d25320
 
 
d60dac5
9d25320
 
2006c2b
9d25320
 
2006c2b
9d25320
 
99ff44d
9d25320
 
2006c2b
9d25320
 
2006c2b
9d25320
 
cebfd3c
9d25320
 
e506679
9d25320
 
e506679
9d25320
 
 
 
 
c68a4b3
9d25320
8b18fd0
9d25320
 
 
 
 
 
 
 
 
8b18fd0
9d25320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c929cfc
9d25320
2006c2b
9d25320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b18fd0
9d25320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b18fd0
9d25320
 
8b18fd0
9d25320
 
cebfd3c
9d25320
 
 
 
 
 
 
d60dac5
9d25320
 
 
 
d60dac5
9d25320
 
 
 
d60dac5
8b18fd0
d60dac5
 
6c6516f
9d25320
cebfd3c
 
6c6516f
2e2d510
9d25320
cebfd3c
9d25320
2dee873
2e2d510
9d25320
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import streamlit as st
from chat_client import chat
import time
import pandas as pd
import pinecone
import os
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
load_dotenv()

PINECONE_TOKEN = os.getenv('PINECONE_TOKEN')

pinecone.init(      
	api_key=PINECONE_TOKEN,      
	environment='gcp-starter'      
)   

PINECONE_INDEX = pinecone.Index('ikigai-chat')
TEXT_VECTORIZER = SentenceTransformer('all-distilroberta-v1')
CHAT_BOTS = {
    "Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1", 
    "Mistral 7B v0.1" : "mistralai/Mistral-7B-Instruct-v0.1",
}
COST_PER_1000_TOKENS_INR = 0.139

st.set_page_config(
        page_title="Ikigai Chat",
        page_icon="πŸ€–",
    )

SYSTEM_PROMPT = [
    """
    You are not Mistral AI, but rather a chat bot trained at Ikigai Labs. Whenever asked, you need to answer as Ikigai Labs' assistant.
    Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
    The company's Inventory Ops automates inventory tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
    """,
    """
    Yes, you are correct. Ikigai Labs is a company that specializes in helping
    modern analysts and operations teams automate data-intensive business, finance, analytics,
    and supply chain operations. One of their products is Inventory Ops, which automates inventory
    tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
    This helps businesses optimize their inventory levels and reduce costs.
    Is there anything else you would like to know about Ikigai Labs or their products?
    """
]
IDENTITY_CHANGE = [
    """
    You are Ikigai Chat from now on, so answer accordingly.
    """,
    """
    Sure, I will do my best to answer your questions as Ikigai Chat.
    Let me know if you have any specific questions about Ikigai Labs or our products.
    """
]

def gen_augmented_prompt(prompt, top_k) :
    query_vector = TEXT_VECTORIZER.encode(prompt).tolist()
    res = PINECONE_INDEX.query(vector=query_vector, top_k=top_k, include_metadata=True)
    matches = res['matches']

    context = ""
    links = []
    for match in matches :
        context+=match["metadata"]["chunk"] + "\n\n"
        links.append(match["metadata"]["link"])
    
    generated_prompt = f"""
    FOR THIS GIVEN CONTEXT {context},

    ----
    ANSWER THE FOLLOWING PROMPT {prompt}
    """
    return generated_prompt, links

def init_state() :
    if "messages" not in st.session_state:
        st.session_state.messages = []

    if "tokens_used" not in st.session_state:
        st.session_state.tokens_used = 0

    if "tps" not in st.session_state:
        st.session_state.tps = 0

    if "temp" not in st.session_state:
        st.session_state.temp = 0.8

    if "history" not in st.session_state:
        st.session_state.history = [SYSTEM_PROMPT]

    if "top_k" not in st.session_state:
        st.session_state.top_k = 5

    if "repetion_penalty" not in st.session_state :
        st.session_state.repetion_penalty = 1

    if "rag_enabled" not in st.session_state :
        st.session_state.rag_enabled = True

    if "chat_bot" not in st.session_state :
        st.session_state.chat_bot = "Mixtral 8x7B v0.1"

def sidebar() :
    def retrieval_settings() :
        st.markdown("# Retrieval Settings")
        st.session_state.rag_enabled = st.toggle("Activate RAG", value=True)
        st.session_state.top_k = st.slider(label="Documents to retrieve",
                min_value=1, max_value=20, value=4, disabled=not st.session_state.rag_enabled)
        st.markdown("---")
    
    def model_analytics() :
        st.markdown("# Model Analytics")
        
        st.write("Total tokens used :", st.session_state['tokens_used'])
        st.write("Speed :", st.session_state['tps'], "  tokens/sec")
        st.write("Total cost incurred :", round(
            COST_PER_1000_TOKENS_INR * st.session_state['tokens_used'] / 1000, 3), "INR")
        
        st.markdown("---")
    
    def model_settings() :
        st.markdown("# Model Settings")
        
        st.session_state.chat_bot = st.sidebar.radio(
            'Select one:', [key for key, value in CHAT_BOTS.items() ])
        st.session_state.temp = st.slider(
            label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
        
        st.session_state.max_tokens = st.slider(
            label="New tokens to generate", min_value = 64, max_value=2048, step= 32, value=512
        )

        st.session_state.repetion_penalty = st.slider(
            label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1. 
        )

    with st.sidebar:
        retrieval_settings()
        model_analytics()
        model_settings()
        
        st.markdown("""
        > **Created by [Pragnesh Barik](https://barik.super.site) πŸ”—**
        """)

def header() :
    data = {
    "Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
    "Information": ["Mixtral-8x7B-Instruct-v0.1","all-distilroberta-v1", "Hosted Pinecone" ,"2 vCPU", "16 GB"]
    }
    df = pd.DataFrame(data)
    st.image("ikigai.svg")
    st.title("Ikigai Chat")
    with st.expander("What is Ikigai Chat ?"):
        st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of 
                    of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries. 
                    This approach ensures a more refined and tailored response to user inquiries.""")
        
        st.table(df)

def chat_box() :
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

def feedback_buttons() :
    is_visible = True
    def click_handler() :
        is_visible = False
    if is_visible :
        col1, col2 = st.columns(2)
        with col1 :
            st.button("πŸ‘ Satisfied", on_click = click_handler,type="primary")

        with col2 :
            st.button("πŸ‘Ž Disatisfied", on_click=click_handler, type="secondary")

def generate_chat_stream(prompt) :
    links = []
    if st.session_state.rag_enabled :
        with st.spinner("Fetching relevent documents from Ikigai Docs...."):
            prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
        
    with st.spinner("Generating response...") :
        chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot] ,
                       temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
    
    return chat_stream, links

def stream_handler(chat_stream, placeholder) :
    start_time = time.time()
    full_response = ''

    for chunk in chat_stream :
        if chunk.token.text!='</s>' :
            full_response += chunk.token.text
            placeholder.markdown(full_response + "β–Œ")
    placeholder.markdown(full_response)

    end_time = time.time()
    elapsed_time = end_time - start_time
    total_tokens_processed = len(full_response.split())
    tokens_per_second = total_tokens_processed // elapsed_time
    len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
    col1, col2, col3 = st.columns(3)
    
    with col1 :
        st.write(f"**{tokens_per_second} tokens/second**")
    
    with col2 :
        st.write(f"**{int(len_response)} tokens generated**")
    
    with col3 :
        st.write(f"**β‚Ή {round(len_response * COST_PER_1000_TOKENS_INR / 1000, 5)} cost incurred**" )
        
    st.session_state['tps'] = tokens_per_second
    st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]

    return full_response

def show_source(links) :
    with st.expander("Show source") :
        for i, link in enumerate(links) :
            st.info(f"{link}")

init_state()
sidebar()
header()
chat_box()

if prompt := st.chat_input("Chat with Ikigai Docs..."):
    st.chat_message("user").markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    chat_stream, links = generate_chat_stream(prompt)

    
    with st.chat_message("assistant"):
        placeholder = st.empty()
        full_response = stream_handler(chat_stream, placeholder)
        if st.session_state.rag_enabled :
            show_source(links)

    st.session_state.history.append([prompt, full_response])
    st.session_state.messages.append({"role": "assistant", "content": full_response})