import gradio as gr import torch import os import spaces import uuid from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_video from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image # Constants bases = { "ToonYou": "frankjoshua/toonyou_beta6", "epiCRealism": "emilianJR/epiCRealism" } step_loaded = None base_loaded = "ToonYou" motion_loaded = None # Ensure model and scheduler are initialized in GPU-enabled function if not torch.cuda.is_available(): raise NotImplementedError("No GPU detected!") device = "cuda" dtype = torch.float16 pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") # Safety checkers from transformers import CLIPFeatureExtractor feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") # Function @spaces.GPU(enable_queue=True) def generate_image(prompt, base, motion, step, progress=gr.Progress()): global step_loaded global base_loaded global motion_loaded print(prompt, base, step) if base_loaded != base: pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) base_loaded = base if motion_loaded != motion: pipe.unload_lora_weights() if motion != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.set_adapters(["motion"], [0.7]) motion_loaded = motion output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=int(step)) name = str(uuid.uuid4()).replace("-", "") path = f"/tmp/{name}.mp4" export_to_video(output.frames[0], path, fps=10) return path # Gradio Interface with gr.Blocks(css="style.css") as demo: gr.HTML( "