Spaces:
Build error
Build error
import random | |
import os | |
import numpy as np | |
import soundfile as sf | |
import streamlit as st | |
from pydub import AudioSegment | |
from datasets import load_dataset | |
from scipy.io.wavfile import write | |
from modules.diarization.nemo_diarization import diarization | |
from modules.nlp.nemo_ner import detect_ner | |
from modules.nlp.nemo_punct_cap import punctuation_capitalization | |
FOLDER_WAV_DB = "data/database/" | |
FOLDER_USER_DATA = "data/user_data/" | |
FOLDER_USER_DATA_WAV = "data/user_data_wav/" | |
FOLDER_MANIFESTS = "info/configs/manifests/" | |
SAMPLE_RATE = 16000 | |
dataset = load_dataset("pustozerov/crema_d_diarization", split='validation') | |
os.makedirs(FOLDER_WAV_DB, exist_ok=True) | |
os.makedirs(FOLDER_MANIFESTS, exist_ok=True) | |
st.title('Call Transcription demo') | |
st.write('This simple demo shows the possibilities of ASR and NLP in the task of automatic speech recognition and ' | |
'diarization. It works with mp3, ogg, and wav files. You can randomly pick an audio file with the dialogue ' | |
'from the built-in database or try uploading your files.') | |
st.write('Note: this demo shows up a reduced-performance model. To get a full-performance neural network or develop a ' | |
'system adapted to your task – contact [email protected].') | |
if st.button('Try a random sample from the database'): | |
os.makedirs(FOLDER_WAV_DB, exist_ok=True) | |
shuffled_dataset = dataset.shuffle(seed=random.randint(0, 100)) | |
file_name = str(shuffled_dataset["file"][0]).split(".")[0] | |
audio_bytes = np.array(shuffled_dataset["data"][0]) | |
audio_bytes_scaled = np.int16(audio_bytes / np.max(np.abs(audio_bytes)) * 32767) | |
write(os.path.join(FOLDER_WAV_DB, file_name + '.wav'), rate=SAMPLE_RATE, data=audio_bytes_scaled) | |
f = sf.SoundFile(os.path.join(FOLDER_WAV_DB, file_name + '.wav')) | |
audio_file = open(os.path.join(FOLDER_WAV_DB, file_name + '.wav'), 'rb') | |
st.audio(audio_file.read()) | |
st.write("Starting transcription. Estimated processing time: %0.1f seconds" % (f.frames / (f.samplerate * 5))) | |
result = diarization(os.path.join(FOLDER_WAV_DB, file_name + '.wav')) | |
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f: | |
transcript = f.read() | |
st.write("Transcription completed. Starting assigning punctuation and capitalization.") | |
sentences = result[file_name]["sentences"] | |
all_strings = "" | |
for sentence in sentences: | |
all_strings = all_strings + sentence["sentence"] + "\n" | |
all_strings = punctuation_capitalization([all_strings])[0] | |
st.write("Punctuation and capitalization are ready. Starting named entity recognition.") | |
tagged_string, tags_summary = detect_ner(all_strings) | |
transcript = transcript + '\n' + tagged_string | |
st.write("Number of speakers: %s" % result[file_name]["speaker_count"]) | |
st.write("Sentences: %s" % len(result[file_name]["sentences"])) | |
st.write("Words: %s" % len(result[file_name]["words"])) | |
st.write("Found named entities: %s" % tags_summary) | |
st.download_button( | |
label="Download audio transcript", | |
data=transcript, | |
file_name='transcript.txt', | |
mime='text/csv', | |
) | |
uploaded_file = st.file_uploader("Choose your recording with a speech", | |
accept_multiple_files=False, type=["mp3", "wav", "ogg"]) | |
if uploaded_file is not None: | |
os.makedirs(FOLDER_USER_DATA, exist_ok=True) | |
print(uploaded_file) | |
if ".mp3" in uploaded_file.name: | |
sound = AudioSegment.from_mp3(uploaded_file) | |
elif ".ogg" in uploaded_file.name: | |
sound = AudioSegment.from_ogg(uploaded_file) | |
else: | |
sound = AudioSegment.from_wav(uploaded_file) | |
save_path = FOLDER_USER_DATA_WAV + uploaded_file.name | |
os.makedirs(FOLDER_USER_DATA_WAV, exist_ok=True) | |
sound.export(save_path, format="wav", parameters=["-ac", "1"]) | |
file_name = os.path.basename(save_path).split(".")[0] | |
audio_file = open(save_path, 'rb') | |
audio_bytes = audio_file.read() | |
st.audio(audio_bytes) | |
f = sf.SoundFile(save_path) | |
st.write("Starting transcription. Estimated processing time: %0.0f minutes and %02.0f seconds" | |
% ((f.frames / (f.samplerate * 3) // 60), (f.frames / (f.samplerate * 3) % 60))) | |
result = diarization(save_path) | |
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f: | |
transcript = f.read() | |
st.write("Transcription completed. Starting assigning punctuation and capitalization.") | |
sentences = result[file_name]["sentences"] | |
all_strings = "" | |
for sentence in sentences: | |
all_strings = all_strings + sentence["sentence"] + "\n" | |
all_strings = punctuation_capitalization([all_strings])[0] | |
st.write("Punctuation and capitalization are ready. Starting named entity recognition.") | |
tagged_string, tags_summary = detect_ner(all_strings) | |
transcript = transcript + '\n' + tagged_string | |
st.write("Number of speakers: %s" % result[file_name]["speaker_count"]) | |
st.write("Sentences: %s" % len(result[file_name]["sentences"])) | |
st.write("Words: %s" % len(result[file_name]["words"])) | |
st.write("Found named entities: %s" % tags_summary) | |
st.download_button( | |
label="Download audio transcript", | |
data=transcript, | |
file_name='transcript.txt', | |
mime='text/csv', | |
) | |