File size: 14,875 Bytes
3ae65e0
 
 
 
 
 
 
 
 
8e10a53
3ae65e0
daf3ca1
3ae65e0
925b7f8
3ae65e0
 
 
daf3ca1
17e0c31
3ae65e0
daf3ca1
3ae65e0
 
 
 
 
 
 
daf3ca1
82e1128
 
 
 
 
 
 
 
 
 
daf3ca1
3ae65e0
 
daf3ca1
 
3ae65e0
 
 
82e1128
 
3ae65e0
 
 
 
 
 
 
 
 
daf3ca1
 
 
3ae65e0
 
daf3ca1
82e1128
 
 
 
62c459e
 
 
daf3ca1
82e1128
daf3ca1
 
 
 
 
82e1128
daf3ca1
 
 
 
 
 
 
 
 
3ae65e0
82e1128
3ae65e0
 
 
 
23fe483
daf3ca1
 
 
 
 
 
 
 
3ae65e0
82e1128
 
 
000b8ee
82e1128
3ae65e0
5238467
8e10a53
daf3ca1
 
 
 
 
 
82e1128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
000b8ee
82e1128
daf3ca1
8e10a53
 
82e1128
925b7f8
 
8e10a53
 
925b7f8
daf3ca1
 
925b7f8
 
45e1876
925b7f8
 
daf3ca1
 
8e10a53
 
 
daf3ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e10a53
 
daf3ca1
 
 
 
 
 
 
8e10a53
daf3ca1
 
 
 
82e1128
daf3ca1
 
8e10a53
82e1128
 
 
daf3ca1
 
82e1128
daf3ca1
82e1128
daf3ca1
 
82e1128
 
 
 
 
 
 
daf3ca1
82e1128
 
 
 
 
daf3ca1
82e1128
 
 
 
 
 
 
 
 
 
 
 
8e10a53
daf3ca1
 
 
 
 
 
 
 
 
 
82e1128
 
 
 
 
 
 
 
 
 
 
 
 
daf3ca1
 
 
 
 
 
 
 
 
 
 
 
 
82e1128
 
daf3ca1
 
 
 
17e0c31
daf3ca1
 
 
 
 
 
 
 
 
82e1128
8e10a53
 
 
 
 
 
 
 
 
 
82e1128
8e10a53
 
 
 
 
 
 
 
17e0c31
daf3ca1
 
8e10a53
 
 
 
23fe483
8e10a53
 
23fe483
8e10a53
 
 
 
 
23fe483
8e10a53
 
23fe483
8e10a53
 
 
 
 
5238467
8e10a53
 
daf3ca1
 
 
 
 
 
8e10a53
daf3ca1
8e10a53
 
daf3ca1
8e10a53
daf3ca1
8e10a53
daf3ca1
8e10a53
daf3ca1
8e10a53
23fe483
 
8e10a53
 
 
 
daf3ca1
8e10a53
cfe7e3e
daf3ca1
5238467
8e10a53
daf3ca1
3ae65e0
8e10a53
daf3ca1
3ae65e0
8e10a53
daf3ca1
8e10a53
cfe7e3e
daf3ca1
8e10a53
daf3ca1
 
8e10a53
 
3ae65e0
8e10a53
 
 
 
 
 
daf3ca1
23fe483
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from tempfile import NamedTemporaryFile
import argparse
import torch
import torchaudio
import gradio as gr
import os
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write

from share_btn import community_icon_html, loading_icon_html, share_js, css

MODEL = None
IS_SHARED_SPACE = "radames/MusicGen-Continuation" in os.environ.get("SPACE_ID", "")


def load_model(version):
    print("Loading model", version)
    return MusicGen.get_pretrained(version)


def predict(
    text,
    melody_input,
    duration=30,
    continuation=False,
    continuation_start=0,
    continuation_end=30,
    topk=250,
    topp=0,
    temperature=1,
    cfg_coef=3,
):
    global MODEL
    topk = int(topk)
    if MODEL is None:
        MODEL = load_model("melody")

    if duration > MODEL.lm.cfg.dataset.segment_duration:
        raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
    if continuation and continuation_end < continuation_start:
        raise gr.Error("The end time must be greater than the start time!")
    MODEL.set_generation_params(
        use_sampling=True,
        top_k=topk,
        top_p=topp,
        temperature=temperature,
        cfg_coef=cfg_coef,
        duration=duration,
    )

    if melody_input:
        melody, sr = torchaudio.load(melody_input)
        # sr, melody = melody_input[0], torch.from_numpy(melody_input[1]).to(MODEL.device).float().t().unsqueeze(0)
        if melody.dim() == 2:
            melody = melody[None]
        if continuation:
            print("\nGenerating continuation\n")
            melody_wavform = melody[
                ..., int(sr * continuation_start) : int(sr * continuation_end)
            ]
            melody_duration = melody_wavform.shape[-1] / sr
            if duration + melody_duration > MODEL.lm.cfg.dataset.segment_duration:
                raise gr.Error("Duration + continuation duration must be <= 30 seconds")
            output = MODEL.generate_continuation(
                prompt=melody_wavform,
                prompt_sample_rate=sr,
                descriptions=[text],
                progress=True,
            )
        else:
            print("\nGenerating with melody\n")
            melody_wavform = melody[
                ..., : int(sr * MODEL.lm.cfg.dataset.segment_duration)
            ]
            output = MODEL.generate_with_chroma(
                descriptions=[text],
                melody_wavs=melody_wavform,
                melody_sample_rate=sr,
                progress=True,
            )
    else:
        print("\nGenerating without melody\n")
        output = MODEL.generate(descriptions=[text], progress=False)

    output = output.detach().cpu().float()[0]
    with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
        audio_write(
            file.name,
            output,
            MODEL.sample_rate,
            strategy="loudness",
            loudness_headroom_db=16,
            loudness_compressor=True,
            add_suffix=False,
        )
        waveform_video = gr.make_waveform(file.name)

    return (
        waveform_video,
        (sr, melody_wavform.unsqueeze(0).numpy()) if melody_input else None,
    )


def ui(**kwargs):
    def toggle(choice):
        if choice == "mic":
            return gr.update(source="microphone", value=None, label="Microphone")
        else:
            return gr.update(source="upload", value=None, label="File")

    def check_melody_length(melody_input):
        if not melody_input:
            return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0)
        melody, sr = torchaudio.load(melody_input)
        audio_length = melody.shape[-1] / sr
        if melody.dim() == 2:
            melody = melody[None]
        return gr.update(maximum=audio_length, value=0), gr.update(
            maximum=audio_length, value=audio_length
        )

    def preview_melody_cut(melody_input, continuation_start, continuation_end):
        if not melody_input:
            return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0)
        melody, sr = torchaudio.load(melody_input)
        audio_length = melody.shape[-1] / sr
        if melody.dim() == 2:
            melody = melody[None]

        if continuation_end < continuation_start:
            raise gr.Error("The end time must be greater than the start time!")
        if continuation_start < 0 or continuation_end > audio_length:
            raise gr.Error("The continuation settings must be within the audio length!")
        print("cutting", int(sr * continuation_start), int(sr * continuation_end))
        prompt_waveform = melody[
            ..., int(sr * continuation_start) : int(sr * continuation_end)
        ]

        return (sr, prompt_waveform.unsqueeze(0).numpy())

    with gr.Blocks(css=css) as interface:
        gr.Markdown(
            """
            # MusicGen Continuation
            This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
            """
        )
        if IS_SHARED_SPACE:
            gr.Markdown(
                """
                ⚠ This Space doesn't work in this shared UI ⚠

                <a href="https://huggingface.co/spaces/radames/MusicGen-Continuation?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
                <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
                to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
                """
            )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(
                        label="Describe your music",
                        lines=2,
                        interactive=True,
                        elem_id="text-input",
                    )
                    with gr.Column():
                        radio = gr.Radio(
                            ["file", "mic"],
                            value="file",
                            label="Melody Condition (optional) File or Mic",
                        )
                        melody = gr.Audio(
                            source="upload",
                            type="filepath",
                            label="File",
                            interactive=True,
                            elem_id="melody-input",
                        )
                with gr.Row():
                    submit = gr.Button("Submit")
                # with gr.Row():
                #     model = gr.Radio(
                #         ["melody", "medium", "small", "large"],
                #         label="Model",
                #         value="melody",
                #         interactive=True,
                #     )
                with gr.Row():
                    duration = gr.Slider(
                        minimum=1,
                        maximum=30,
                        value=10,
                        label="Total Duration",
                        interactive=True,
                    )
                with gr.Row():
                    continuation = gr.Checkbox(value=False, label="Enable Continuation")
                with gr.Row():
                    continuation_start = gr.Slider(
                        minimum=0,
                        maximum=30,
                        step=0.01,
                        value=0,
                        label="melody cut start",
                        interactive=True,
                    )
                    continuation_end = gr.Slider(
                        minimum=0,
                        maximum=30,
                        step=0.01,
                        value=0,
                        label="melody cut end",
                        interactive=True,
                    )
                    cut_btn = gr.Button("Cut Melody").style(full_width=False)
                with gr.Row():
                    preview_cut = gr.Audio(
                        type="numpy",
                        label="Cut Preview",
                    )
                with gr.Accordion(label="Advanced Settings", open=False):
                    with gr.Row():
                        topk = gr.Number(label="Top-k", value=250, interactive=True)
                        topp = gr.Number(label="Top-p", value=0, interactive=True)
                        temperature = gr.Number(
                            label="Temperature", value=1.0, interactive=True
                        )
                        cfg_coef = gr.Number(
                            label="Classifier Free Guidance",
                            value=3.0,
                            interactive=True,
                        )
            with gr.Column():
                output = gr.Video(label="Generated Music", elem_id="generated-video")
                output_melody = gr.Audio(label="Melody ", elem_id="melody-output")
                with gr.Row(visible=False) as share_row:
                    with gr.Group(elem_id="share-btn-container"):
                        community_icon = gr.HTML(community_icon_html)
                        loading_icon = gr.HTML(loading_icon_html)
                        share_button = gr.Button(
                            "Share to community", elem_id="share-btn"
                        )
                        share_button.click(None, [], [], _js=share_js)
        melody.change(
            check_melody_length,
            melody,
            [continuation_start, continuation_end],
            queue=False,
        )
        cut_btn.click(
            preview_melody_cut,
            [melody, continuation_start, continuation_end],
            preview_cut,
            queue=False,
        )

        submit.click(
            lambda x: gr.update(visible=False),
            None,
            [share_row],
            queue=False,
            show_progress=False,
        ).then(
            predict,
            inputs=[
                text,
                melody,
                duration,
                continuation,
                continuation_start,
                continuation_end,
                topk,
                topp,
                temperature,
                cfg_coef,
            ],
            outputs=[output, output_melody],
        ).then(
            lambda x: gr.update(visible=True),
            None,
            [share_row],
            queue=False,
            show_progress=False,
        )
        radio.change(toggle, radio, [melody], queue=False, show_progress=False)
        examples = gr.Examples(
            fn=predict,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                ["90s rock song with electric guitar and heavy drums", None],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[output],
        )
        gr.Markdown(
            """
            ### More details

            The model will generate a short music extract based on the description you provided.
            You can generate up to 30 seconds of audio.

            We present 4 model variations:
            1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
            2. Small -- a 300M transformer decoder conditioned on text only.
            3. Medium -- a 1.5B transformer decoder conditioned on text only.
            4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)

            When using `melody`, ou can optionaly provide a reference audio from
            which a broad melody will be extracted. The model will then try to follow both the description and melody provided.

            You can also use your own GPU or a Google Colab by following the instructions on our repo.
            See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
            for more details.
            """
        )

        # Show the interface
        launch_kwargs = {}
        username = kwargs.get("username")
        password = kwargs.get("password")
        server_port = kwargs.get("server_port", 0)
        inbrowser = kwargs.get("inbrowser", False)
        share = kwargs.get("share", False)
        server_name = kwargs.get("listen")

        launch_kwargs["server_name"] = server_name

        if username and password:
            launch_kwargs["auth"] = (username, password)
        if server_port > 0:
            launch_kwargs["server_port"] = server_port
        if inbrowser:
            launch_kwargs["inbrowser"] = inbrowser
        if share:
            launch_kwargs["share"] = share

        interface.queue().launch(**launch_kwargs, max_threads=1)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--listen",
        type=str,
        default="0.0.0.0",
        help="IP to listen on for connections to Gradio",
    )
    parser.add_argument(
        "--username", type=str, default="", help="Username for authentication"
    )
    parser.add_argument(
        "--password", type=str, default="", help="Password for authentication"
    )
    parser.add_argument(
        "--server_port",
        type=int,
        default=7860,
        help="Port to run the server listener on",
    )
    parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
    parser.add_argument("--share", action="store_true", help="Share the gradio UI")

    args = parser.parse_args()

    ui(
        username=args.username,
        password=args.password,
        inbrowser=args.inbrowser,
        server_port=args.server_port,
        share=args.share,
        listen=args.listen,
    )