Spaces:
Runtime error
Runtime error
enable input_mode
Browse files- app-controlnet.py +0 -322
- app-txt2img.py +0 -255
- app_init.py +20 -18
- frontend/src/lib/components/ImagePlayer.svelte +5 -15
- frontend/src/lib/components/InputRange.svelte +1 -1
- frontend/src/lib/components/PipelineOptions.svelte +12 -10
- frontend/src/lib/components/VideoInput.svelte +22 -9
- frontend/src/lib/lcmLive.ts +65 -45
- frontend/src/lib/store.ts +4 -0
- frontend/src/lib/types.ts +8 -1
- frontend/src/routes/+page.svelte +46 -57
- pipelines/controlnet.py +1 -1
- pipelines/txt2img.py +1 -3
- static/controlnet.html +0 -427
- static/txt2img.html +0 -304
- util.py +19 -0
app-controlnet.py
DELETED
@@ -1,322 +0,0 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
-
import logging
|
4 |
-
import traceback
|
5 |
-
from pydantic import BaseModel
|
6 |
-
|
7 |
-
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import (
|
10 |
-
StreamingResponse,
|
11 |
-
JSONResponse,
|
12 |
-
HTMLResponse,
|
13 |
-
FileResponse,
|
14 |
-
)
|
15 |
-
|
16 |
-
from diffusers import AutoencoderTiny, ControlNetModel
|
17 |
-
from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
|
18 |
-
from compel import Compel
|
19 |
-
import torch
|
20 |
-
|
21 |
-
from canny_gpu import SobelOperator
|
22 |
-
|
23 |
-
# from controlnet_aux import OpenposeDetector
|
24 |
-
# import cv2
|
25 |
-
|
26 |
-
try:
|
27 |
-
import intel_extension_for_pytorch as ipex
|
28 |
-
except:
|
29 |
-
pass
|
30 |
-
from PIL import Image
|
31 |
-
import numpy as np
|
32 |
-
import gradio as gr
|
33 |
-
import io
|
34 |
-
import uuid
|
35 |
-
import os
|
36 |
-
import time
|
37 |
-
import psutil
|
38 |
-
|
39 |
-
|
40 |
-
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
41 |
-
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
42 |
-
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
43 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
44 |
-
WIDTH = 512
|
45 |
-
HEIGHT = 512
|
46 |
-
# disable tiny autoencoder for better quality speed tradeoff
|
47 |
-
USE_TINY_AUTOENCODER = True
|
48 |
-
|
49 |
-
# check if MPS is available OSX only M1/M2/M3 chips
|
50 |
-
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
51 |
-
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
52 |
-
device = torch.device(
|
53 |
-
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
54 |
-
)
|
55 |
-
|
56 |
-
# change to torch.float16 to save GPU memory
|
57 |
-
torch_dtype = torch.float16
|
58 |
-
|
59 |
-
print(f"TIMEOUT: {TIMEOUT}")
|
60 |
-
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
61 |
-
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
62 |
-
print(f"device: {device}")
|
63 |
-
|
64 |
-
if mps_available:
|
65 |
-
device = torch.device("mps")
|
66 |
-
device = "cpu"
|
67 |
-
torch_dtype = torch.float32
|
68 |
-
|
69 |
-
controlnet_canny = ControlNetModel.from_pretrained(
|
70 |
-
"lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype
|
71 |
-
).to(device)
|
72 |
-
|
73 |
-
canny_torch = SobelOperator(device=device)
|
74 |
-
# controlnet_pose = ControlNetModel.from_pretrained(
|
75 |
-
# "lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype
|
76 |
-
# ).to(device)
|
77 |
-
# controlnet_depth = ControlNetModel.from_pretrained(
|
78 |
-
# "lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch_dtype
|
79 |
-
# ).to(device)
|
80 |
-
|
81 |
-
|
82 |
-
# pose_processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
83 |
-
|
84 |
-
if SAFETY_CHECKER == "True":
|
85 |
-
pipe = LatentConsistencyModelPipeline_controlnet.from_pretrained(
|
86 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
87 |
-
controlnet=controlnet_canny,
|
88 |
-
scheduler=None,
|
89 |
-
)
|
90 |
-
else:
|
91 |
-
pipe = LatentConsistencyModelPipeline_controlnet.from_pretrained(
|
92 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
93 |
-
safety_checker=None,
|
94 |
-
controlnet=controlnet_canny,
|
95 |
-
scheduler=None,
|
96 |
-
)
|
97 |
-
|
98 |
-
if USE_TINY_AUTOENCODER:
|
99 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
100 |
-
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
101 |
-
)
|
102 |
-
pipe.set_progress_bar_config(disable=True)
|
103 |
-
pipe.to(device=device, dtype=torch_dtype).to(device)
|
104 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
105 |
-
|
106 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
107 |
-
pipe.enable_attention_slicing()
|
108 |
-
|
109 |
-
compel_proc = Compel(
|
110 |
-
tokenizer=pipe.tokenizer,
|
111 |
-
text_encoder=pipe.text_encoder,
|
112 |
-
truncate_long_prompts=False,
|
113 |
-
)
|
114 |
-
if TORCH_COMPILE:
|
115 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
116 |
-
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
117 |
-
|
118 |
-
pipe(
|
119 |
-
prompt="warmup",
|
120 |
-
image=[Image.new("RGB", (768, 768))],
|
121 |
-
control_image=[Image.new("RGB", (768, 768))],
|
122 |
-
)
|
123 |
-
|
124 |
-
|
125 |
-
user_queue_map = {}
|
126 |
-
|
127 |
-
|
128 |
-
class InputParams(BaseModel):
|
129 |
-
seed: int = 2159232
|
130 |
-
prompt: str
|
131 |
-
guidance_scale: float = 8.0
|
132 |
-
strength: float = 0.5
|
133 |
-
steps: int = 4
|
134 |
-
lcm_steps: int = 50
|
135 |
-
width: int = WIDTH
|
136 |
-
height: int = HEIGHT
|
137 |
-
controlnet_scale: float = 0.8
|
138 |
-
controlnet_start: float = 0.0
|
139 |
-
controlnet_end: float = 1.0
|
140 |
-
canny_low_threshold: float = 0.31
|
141 |
-
canny_high_threshold: float = 0.78
|
142 |
-
debug_canny: bool = False
|
143 |
-
|
144 |
-
|
145 |
-
def predict(
|
146 |
-
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
|
147 |
-
):
|
148 |
-
generator = torch.manual_seed(params.seed)
|
149 |
-
|
150 |
-
control_image = canny_torch(
|
151 |
-
input_image, params.canny_low_threshold, params.canny_high_threshold
|
152 |
-
)
|
153 |
-
results = pipe(
|
154 |
-
control_image=control_image,
|
155 |
-
prompt_embeds=prompt_embeds,
|
156 |
-
generator=generator,
|
157 |
-
image=input_image,
|
158 |
-
strength=params.strength,
|
159 |
-
num_inference_steps=params.steps,
|
160 |
-
guidance_scale=params.guidance_scale,
|
161 |
-
width=params.width,
|
162 |
-
height=params.height,
|
163 |
-
lcm_origin_steps=params.lcm_steps,
|
164 |
-
output_type="pil",
|
165 |
-
controlnet_conditioning_scale=params.controlnet_scale,
|
166 |
-
control_guidance_start=params.controlnet_start,
|
167 |
-
control_guidance_end=params.controlnet_end,
|
168 |
-
)
|
169 |
-
nsfw_content_detected = (
|
170 |
-
results.nsfw_content_detected[0]
|
171 |
-
if "nsfw_content_detected" in results
|
172 |
-
else False
|
173 |
-
)
|
174 |
-
if nsfw_content_detected:
|
175 |
-
return None
|
176 |
-
result_image = results.images[0]
|
177 |
-
if params.debug_canny:
|
178 |
-
# paste control_image on top of result_image
|
179 |
-
w0, h0 = (200, 200)
|
180 |
-
control_image = control_image.resize((w0, h0))
|
181 |
-
w1, h1 = result_image.size
|
182 |
-
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
183 |
-
|
184 |
-
return result_image
|
185 |
-
|
186 |
-
|
187 |
-
app = FastAPI()
|
188 |
-
app.add_middleware(
|
189 |
-
CORSMiddleware,
|
190 |
-
allow_origins=["*"],
|
191 |
-
allow_credentials=True,
|
192 |
-
allow_methods=["*"],
|
193 |
-
allow_headers=["*"],
|
194 |
-
)
|
195 |
-
|
196 |
-
|
197 |
-
@app.websocket("/ws")
|
198 |
-
async def websocket_endpoint(websocket: WebSocket):
|
199 |
-
await websocket.accept()
|
200 |
-
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
|
201 |
-
print("Server is full")
|
202 |
-
await websocket.send_json({"status": "error", "message": "Server is full"})
|
203 |
-
await websocket.close()
|
204 |
-
return
|
205 |
-
|
206 |
-
try:
|
207 |
-
uid = str(uuid.uuid4())
|
208 |
-
print(f"New user connected: {uid}")
|
209 |
-
await websocket.send_json(
|
210 |
-
{"status": "success", "message": "Connected", "userId": uid}
|
211 |
-
)
|
212 |
-
user_queue_map[uid] = {"queue": asyncio.Queue()}
|
213 |
-
await websocket.send_json(
|
214 |
-
{"status": "start", "message": "Start Streaming", "userId": uid}
|
215 |
-
)
|
216 |
-
await handle_websocket_data(websocket, uid)
|
217 |
-
except WebSocketDisconnect as e:
|
218 |
-
logging.error(f"WebSocket Error: {e}, {uid}")
|
219 |
-
traceback.print_exc()
|
220 |
-
finally:
|
221 |
-
print(f"User disconnected: {uid}")
|
222 |
-
queue_value = user_queue_map.pop(uid, None)
|
223 |
-
queue = queue_value.get("queue", None)
|
224 |
-
if queue:
|
225 |
-
while not queue.empty():
|
226 |
-
try:
|
227 |
-
queue.get_nowait()
|
228 |
-
except asyncio.QueueEmpty:
|
229 |
-
continue
|
230 |
-
|
231 |
-
|
232 |
-
@app.get("/queue_size")
|
233 |
-
async def get_queue_size():
|
234 |
-
queue_size = len(user_queue_map)
|
235 |
-
return JSONResponse({"queue_size": queue_size})
|
236 |
-
|
237 |
-
|
238 |
-
@app.get("/stream/{user_id}")
|
239 |
-
async def stream(user_id: uuid.UUID):
|
240 |
-
uid = str(user_id)
|
241 |
-
try:
|
242 |
-
user_queue = user_queue_map[uid]
|
243 |
-
queue = user_queue["queue"]
|
244 |
-
|
245 |
-
async def generate():
|
246 |
-
last_prompt: str = None
|
247 |
-
prompt_embeds: torch.Tensor = None
|
248 |
-
while True:
|
249 |
-
data = await queue.get()
|
250 |
-
input_image = data["image"]
|
251 |
-
params = data["params"]
|
252 |
-
if input_image is None:
|
253 |
-
continue
|
254 |
-
# avoid recalculate prompt embeds
|
255 |
-
if last_prompt != params.prompt:
|
256 |
-
print("new prompt")
|
257 |
-
prompt_embeds = compel_proc(params.prompt)
|
258 |
-
last_prompt = params.prompt
|
259 |
-
|
260 |
-
image = predict(
|
261 |
-
input_image,
|
262 |
-
params,
|
263 |
-
prompt_embeds,
|
264 |
-
)
|
265 |
-
if image is None:
|
266 |
-
continue
|
267 |
-
frame_data = io.BytesIO()
|
268 |
-
image.save(frame_data, format="JPEG")
|
269 |
-
frame_data = frame_data.getvalue()
|
270 |
-
if frame_data is not None and len(frame_data) > 0:
|
271 |
-
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
272 |
-
|
273 |
-
await asyncio.sleep(1.0 / 120.0)
|
274 |
-
|
275 |
-
return StreamingResponse(
|
276 |
-
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
277 |
-
)
|
278 |
-
except Exception as e:
|
279 |
-
logging.error(f"Streaming Error: {e}, {user_queue_map}")
|
280 |
-
traceback.print_exc()
|
281 |
-
return HTTPException(status_code=404, detail="User not found")
|
282 |
-
|
283 |
-
|
284 |
-
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
285 |
-
uid = str(user_id)
|
286 |
-
user_queue = user_queue_map[uid]
|
287 |
-
queue = user_queue["queue"]
|
288 |
-
if not queue:
|
289 |
-
return HTTPException(status_code=404, detail="User not found")
|
290 |
-
last_time = time.time()
|
291 |
-
try:
|
292 |
-
while True:
|
293 |
-
data = await websocket.receive_bytes()
|
294 |
-
params = await websocket.receive_json()
|
295 |
-
params = InputParams(**params)
|
296 |
-
pil_image = Image.open(io.BytesIO(data))
|
297 |
-
|
298 |
-
while not queue.empty():
|
299 |
-
try:
|
300 |
-
queue.get_nowait()
|
301 |
-
except asyncio.QueueEmpty:
|
302 |
-
continue
|
303 |
-
await queue.put({"image": pil_image, "params": params})
|
304 |
-
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
305 |
-
await websocket.send_json(
|
306 |
-
{
|
307 |
-
"status": "timeout",
|
308 |
-
"message": "Your session has ended",
|
309 |
-
"userId": uid,
|
310 |
-
}
|
311 |
-
)
|
312 |
-
await websocket.close()
|
313 |
-
return
|
314 |
-
|
315 |
-
except Exception as e:
|
316 |
-
logging.error(f"Error: {e}")
|
317 |
-
traceback.print_exc()
|
318 |
-
|
319 |
-
|
320 |
-
@app.get("/", response_class=HTMLResponse)
|
321 |
-
async def root():
|
322 |
-
return FileResponse("./static/controlnet.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app-txt2img.py
DELETED
@@ -1,255 +0,0 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
-
import logging
|
4 |
-
import traceback
|
5 |
-
from pydantic import BaseModel
|
6 |
-
|
7 |
-
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import (
|
10 |
-
StreamingResponse,
|
11 |
-
JSONResponse,
|
12 |
-
HTMLResponse,
|
13 |
-
FileResponse,
|
14 |
-
)
|
15 |
-
|
16 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny
|
17 |
-
from compel import Compel
|
18 |
-
import torch
|
19 |
-
|
20 |
-
try:
|
21 |
-
import intel_extension_for_pytorch as ipex
|
22 |
-
except:
|
23 |
-
pass
|
24 |
-
from PIL import Image
|
25 |
-
import numpy as np
|
26 |
-
import gradio as gr
|
27 |
-
import io
|
28 |
-
import uuid
|
29 |
-
import os
|
30 |
-
import time
|
31 |
-
import psutil
|
32 |
-
|
33 |
-
|
34 |
-
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
35 |
-
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
36 |
-
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
37 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
38 |
-
|
39 |
-
WIDTH = 768
|
40 |
-
HEIGHT = 768
|
41 |
-
# disable tiny autoencoder for better quality speed tradeoff
|
42 |
-
USE_TINY_AUTOENCODER = False
|
43 |
-
|
44 |
-
# check if MPS is available OSX only M1/M2/M3 chips
|
45 |
-
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
46 |
-
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
47 |
-
device = torch.device(
|
48 |
-
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
49 |
-
)
|
50 |
-
torch_device = device
|
51 |
-
# change to torch.float16 to save GPU memory
|
52 |
-
torch_dtype = torch.float32
|
53 |
-
|
54 |
-
print(f"TIMEOUT: {TIMEOUT}")
|
55 |
-
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
56 |
-
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
57 |
-
print(f"device: {device}")
|
58 |
-
|
59 |
-
if mps_available:
|
60 |
-
device = torch.device("mps")
|
61 |
-
torch_device = "cpu"
|
62 |
-
torch_dtype = torch.float32
|
63 |
-
|
64 |
-
if SAFETY_CHECKER == "True":
|
65 |
-
pipe = DiffusionPipeline.from_pretrained(
|
66 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
67 |
-
)
|
68 |
-
else:
|
69 |
-
pipe = DiffusionPipeline.from_pretrained(
|
70 |
-
"SimianLuo/LCM_Dreamshaper_v7",
|
71 |
-
safety_checker=None,
|
72 |
-
)
|
73 |
-
if USE_TINY_AUTOENCODER:
|
74 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
75 |
-
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
76 |
-
)
|
77 |
-
pipe.set_progress_bar_config(disable=True)
|
78 |
-
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
79 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
80 |
-
|
81 |
-
# check if computer has less than 64GB of RAM using sys or os
|
82 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
83 |
-
pipe.enable_attention_slicing()
|
84 |
-
|
85 |
-
if TORCH_COMPILE:
|
86 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
87 |
-
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
88 |
-
|
89 |
-
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
90 |
-
|
91 |
-
compel_proc = Compel(
|
92 |
-
tokenizer=pipe.tokenizer,
|
93 |
-
text_encoder=pipe.text_encoder,
|
94 |
-
truncate_long_prompts=False,
|
95 |
-
)
|
96 |
-
user_queue_map = {}
|
97 |
-
|
98 |
-
|
99 |
-
class InputParams(BaseModel):
|
100 |
-
seed: int = 2159232
|
101 |
-
prompt: str
|
102 |
-
guidance_scale: float = 8.0
|
103 |
-
strength: float = 0.5
|
104 |
-
steps: int = 4
|
105 |
-
lcm_steps: int = 50
|
106 |
-
width: int = WIDTH
|
107 |
-
height: int = HEIGHT
|
108 |
-
|
109 |
-
|
110 |
-
def predict(params: InputParams):
|
111 |
-
generator = torch.manual_seed(params.seed)
|
112 |
-
prompt_embeds = compel_proc(params.prompt)
|
113 |
-
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
114 |
-
results = pipe(
|
115 |
-
prompt_embeds=prompt_embeds,
|
116 |
-
generator=generator,
|
117 |
-
num_inference_steps=params.steps,
|
118 |
-
guidance_scale=params.guidance_scale,
|
119 |
-
width=params.width,
|
120 |
-
height=params.height,
|
121 |
-
original_inference_steps=params.lcm_steps,
|
122 |
-
output_type="pil",
|
123 |
-
)
|
124 |
-
nsfw_content_detected = (
|
125 |
-
results.nsfw_content_detected[0]
|
126 |
-
if "nsfw_content_detected" in results
|
127 |
-
else False
|
128 |
-
)
|
129 |
-
if nsfw_content_detected:
|
130 |
-
return None
|
131 |
-
return results.images[0]
|
132 |
-
|
133 |
-
|
134 |
-
app = FastAPI()
|
135 |
-
app.add_middleware(
|
136 |
-
CORSMiddleware,
|
137 |
-
allow_origins=["*"],
|
138 |
-
allow_credentials=True,
|
139 |
-
allow_methods=["*"],
|
140 |
-
allow_headers=["*"],
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
@app.websocket("/ws")
|
145 |
-
async def websocket_endpoint(websocket: WebSocket):
|
146 |
-
await websocket.accept()
|
147 |
-
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
|
148 |
-
print("Server is full")
|
149 |
-
await websocket.send_json({"status": "error", "message": "Server is full"})
|
150 |
-
await websocket.close()
|
151 |
-
return
|
152 |
-
|
153 |
-
try:
|
154 |
-
uid = str(uuid.uuid4())
|
155 |
-
print(f"New user connected: {uid}")
|
156 |
-
await websocket.send_json(
|
157 |
-
{"status": "success", "message": "Connected", "userId": uid}
|
158 |
-
)
|
159 |
-
user_queue_map[uid] = {
|
160 |
-
"queue": asyncio.Queue(),
|
161 |
-
}
|
162 |
-
await websocket.send_json(
|
163 |
-
{"status": "start", "message": "Start Streaming", "userId": uid}
|
164 |
-
)
|
165 |
-
await handle_websocket_data(websocket, uid)
|
166 |
-
except WebSocketDisconnect as e:
|
167 |
-
logging.error(f"WebSocket Error: {e}, {uid}")
|
168 |
-
traceback.print_exc()
|
169 |
-
finally:
|
170 |
-
print(f"User disconnected: {uid}")
|
171 |
-
queue_value = user_queue_map.pop(uid, None)
|
172 |
-
queue = queue_value.get("queue", None)
|
173 |
-
if queue:
|
174 |
-
while not queue.empty():
|
175 |
-
try:
|
176 |
-
queue.get_nowait()
|
177 |
-
except asyncio.QueueEmpty:
|
178 |
-
continue
|
179 |
-
|
180 |
-
|
181 |
-
@app.get("/queue_size")
|
182 |
-
async def get_queue_size():
|
183 |
-
queue_size = len(user_queue_map)
|
184 |
-
return JSONResponse({"queue_size": queue_size})
|
185 |
-
|
186 |
-
|
187 |
-
@app.get("/stream/{user_id}")
|
188 |
-
async def stream(user_id: uuid.UUID):
|
189 |
-
uid = str(user_id)
|
190 |
-
try:
|
191 |
-
user_queue = user_queue_map[uid]
|
192 |
-
queue = user_queue["queue"]
|
193 |
-
|
194 |
-
async def generate():
|
195 |
-
while True:
|
196 |
-
params = await queue.get()
|
197 |
-
if params is None:
|
198 |
-
continue
|
199 |
-
|
200 |
-
image = predict(params)
|
201 |
-
if image is None:
|
202 |
-
continue
|
203 |
-
frame_data = io.BytesIO()
|
204 |
-
image.save(frame_data, format="JPEG")
|
205 |
-
frame_data = frame_data.getvalue()
|
206 |
-
if frame_data is not None and len(frame_data) > 0:
|
207 |
-
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
208 |
-
|
209 |
-
await asyncio.sleep(1.0 / 120.0)
|
210 |
-
|
211 |
-
return StreamingResponse(
|
212 |
-
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
213 |
-
)
|
214 |
-
except Exception as e:
|
215 |
-
logging.error(f"Streaming Error: {e}, {user_queue_map}")
|
216 |
-
traceback.print_exc()
|
217 |
-
return HTTPException(status_code=404, detail="User not found")
|
218 |
-
|
219 |
-
|
220 |
-
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
221 |
-
uid = str(user_id)
|
222 |
-
user_queue = user_queue_map[uid]
|
223 |
-
queue = user_queue["queue"]
|
224 |
-
if not queue:
|
225 |
-
return HTTPException(status_code=404, detail="User not found")
|
226 |
-
last_time = time.time()
|
227 |
-
try:
|
228 |
-
while True:
|
229 |
-
params = await websocket.receive_json()
|
230 |
-
params = InputParams(**params)
|
231 |
-
while not queue.empty():
|
232 |
-
try:
|
233 |
-
queue.get_nowait()
|
234 |
-
except asyncio.QueueEmpty:
|
235 |
-
continue
|
236 |
-
await queue.put(params)
|
237 |
-
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
238 |
-
await websocket.send_json(
|
239 |
-
{
|
240 |
-
"status": "timeout",
|
241 |
-
"message": "Your session has ended",
|
242 |
-
"userId": uid,
|
243 |
-
}
|
244 |
-
)
|
245 |
-
await websocket.close()
|
246 |
-
return
|
247 |
-
|
248 |
-
except Exception as e:
|
249 |
-
logging.error(f"Error: {e}")
|
250 |
-
traceback.print_exc()
|
251 |
-
|
252 |
-
|
253 |
-
@app.get("/", response_class=HTMLResponse)
|
254 |
-
async def root():
|
255 |
-
return FileResponse("./static/txt2img.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_init.py
CHANGED
@@ -2,6 +2,7 @@ from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
|
2 |
from fastapi.responses import StreamingResponse, JSONResponse
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.staticfiles import StaticFiles
|
|
|
5 |
|
6 |
import logging
|
7 |
import traceback
|
@@ -11,8 +12,8 @@ import uuid
|
|
11 |
from asyncio import Event, sleep
|
12 |
import time
|
13 |
from PIL import Image
|
14 |
-
import io
|
15 |
from types import SimpleNamespace
|
|
|
16 |
|
17 |
|
18 |
def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipeline):
|
@@ -23,7 +24,6 @@ def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipel
|
|
23 |
allow_methods=["*"],
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
-
print("Init app", app)
|
27 |
|
28 |
@app.websocket("/ws")
|
29 |
async def websocket_endpoint(websocket: WebSocket):
|
@@ -41,7 +41,6 @@ def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipel
|
|
41 |
{"status": "success", "message": "Connected", "userId": uid}
|
42 |
)
|
43 |
user_data_events[uid] = UserDataEvent()
|
44 |
-
print(f"User data events: {user_data_events}")
|
45 |
await websocket.send_json(
|
46 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
47 |
)
|
@@ -59,31 +58,27 @@ def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipel
|
|
59 |
return JSONResponse({"queue_size": queue_size})
|
60 |
|
61 |
@app.get("/stream/{user_id}")
|
62 |
-
async def stream(user_id: uuid.UUID):
|
63 |
uid = str(user_id)
|
64 |
try:
|
65 |
|
66 |
async def generate():
|
67 |
-
last_prompt: str = None
|
68 |
while True:
|
69 |
data = await user_data_events[uid].wait_for_data()
|
70 |
params = data["params"]
|
71 |
-
# input_image = data["image"]
|
72 |
-
# if input_image is None:
|
73 |
-
# continue
|
74 |
image = pipeline.predict(params)
|
75 |
if image is None:
|
76 |
continue
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
if
|
81 |
-
yield
|
82 |
-
|
83 |
-
await sleep(1.0 / 120.0)
|
84 |
|
85 |
return StreamingResponse(
|
86 |
-
generate(),
|
|
|
|
|
87 |
)
|
88 |
except Exception as e:
|
89 |
logging.error(f"Streaming Error: {e}, {user_data_events}")
|
@@ -99,8 +94,9 @@ def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipel
|
|
99 |
while True:
|
100 |
params = await websocket.receive_json()
|
101 |
params = pipeline.InputParams(**params)
|
|
|
102 |
params = SimpleNamespace(**params.dict())
|
103 |
-
if
|
104 |
image_data = await websocket.receive_bytes()
|
105 |
pil_image = Image.open(io.BytesIO(image_data))
|
106 |
params.image = pil_image
|
@@ -125,6 +121,12 @@ def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipel
|
|
125 |
async def settings():
|
126 |
info = pipeline.Info.schema()
|
127 |
input_params = pipeline.InputParams.schema()
|
128 |
-
return JSONResponse(
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
app.mount("/", StaticFiles(directory="public", html=True), name="public")
|
|
|
2 |
from fastapi.responses import StreamingResponse, JSONResponse
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.staticfiles import StaticFiles
|
5 |
+
from fastapi import Request
|
6 |
|
7 |
import logging
|
8 |
import traceback
|
|
|
12 |
from asyncio import Event, sleep
|
13 |
import time
|
14 |
from PIL import Image
|
|
|
15 |
from types import SimpleNamespace
|
16 |
+
from util import pil_to_frame, is_firefox
|
17 |
|
18 |
|
19 |
def init_app(app: FastAPI, user_data_events: UserDataEventMap, args: Args, pipeline):
|
|
|
24 |
allow_methods=["*"],
|
25 |
allow_headers=["*"],
|
26 |
)
|
|
|
27 |
|
28 |
@app.websocket("/ws")
|
29 |
async def websocket_endpoint(websocket: WebSocket):
|
|
|
41 |
{"status": "success", "message": "Connected", "userId": uid}
|
42 |
)
|
43 |
user_data_events[uid] = UserDataEvent()
|
|
|
44 |
await websocket.send_json(
|
45 |
{"status": "start", "message": "Start Streaming", "userId": uid}
|
46 |
)
|
|
|
58 |
return JSONResponse({"queue_size": queue_size})
|
59 |
|
60 |
@app.get("/stream/{user_id}")
|
61 |
+
async def stream(user_id: uuid.UUID, request: Request):
|
62 |
uid = str(user_id)
|
63 |
try:
|
64 |
|
65 |
async def generate():
|
|
|
66 |
while True:
|
67 |
data = await user_data_events[uid].wait_for_data()
|
68 |
params = data["params"]
|
|
|
|
|
|
|
69 |
image = pipeline.predict(params)
|
70 |
if image is None:
|
71 |
continue
|
72 |
+
frame = pil_to_frame(image)
|
73 |
+
yield frame
|
74 |
+
# https://bugs.chromium.org/p/chromium/issues/detail?id=1250396
|
75 |
+
if not is_firefox(request.headers["user-agent"]):
|
76 |
+
yield frame
|
|
|
|
|
77 |
|
78 |
return StreamingResponse(
|
79 |
+
generate(),
|
80 |
+
media_type="multipart/x-mixed-replace;boundary=frame",
|
81 |
+
headers={"Cache-Control": "no-cache"},
|
82 |
)
|
83 |
except Exception as e:
|
84 |
logging.error(f"Streaming Error: {e}, {user_data_events}")
|
|
|
94 |
while True:
|
95 |
params = await websocket.receive_json()
|
96 |
params = pipeline.InputParams(**params)
|
97 |
+
info = pipeline.Info()
|
98 |
params = SimpleNamespace(**params.dict())
|
99 |
+
if info.input_mode == "image":
|
100 |
image_data = await websocket.receive_bytes()
|
101 |
pil_image = Image.open(io.BytesIO(image_data))
|
102 |
params.image = pil_image
|
|
|
121 |
async def settings():
|
122 |
info = pipeline.Info.schema()
|
123 |
input_params = pipeline.InputParams.schema()
|
124 |
+
return JSONResponse(
|
125 |
+
{
|
126 |
+
"info": info,
|
127 |
+
"input_params": input_params,
|
128 |
+
"max_queue_size": args.max_queue_size,
|
129 |
+
}
|
130 |
+
)
|
131 |
|
132 |
app.mount("/", StaticFiles(directory="public", html=True), name="public")
|
frontend/src/lib/components/ImagePlayer.svelte
CHANGED
@@ -3,7 +3,10 @@
|
|
3 |
import { onFrameChangeStore } from '$lib/mediaStream';
|
4 |
import { PUBLIC_BASE_URL } from '$env/static/public';
|
5 |
|
6 |
-
$: streamId = $lcmLiveState
|
|
|
|
|
|
|
7 |
</script>
|
8 |
|
9 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
@@ -14,19 +17,6 @@
|
|
14 |
<div class="aspect-square w-full rounded-lg" />
|
15 |
{/if}
|
16 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
17 |
-
<
|
18 |
-
<slot />
|
19 |
-
</div>
|
20 |
-
<svg
|
21 |
-
xmlns="http://www.w3.org/2000/svg"
|
22 |
-
viewBox="0 0 448 448"
|
23 |
-
width="100"
|
24 |
-
class="absolute top-0 z-0 w-full p-4 opacity-20"
|
25 |
-
>
|
26 |
-
<path
|
27 |
-
fill="currentColor"
|
28 |
-
d="M224 256a128 128 0 1 0 0-256 128 128 0 1 0 0 256zm-45.7 48A178.3 178.3 0 0 0 0 482.3 29.7 29.7 0 0 0 29.7 512h388.6a29.7 29.7 0 0 0 29.7-29.7c0-98.5-79.8-178.3-178.3-178.3h-91.4z"
|
29 |
-
/>
|
30 |
-
</svg>
|
31 |
</div>
|
32 |
</div>
|
|
|
3 |
import { onFrameChangeStore } from '$lib/mediaStream';
|
4 |
import { PUBLIC_BASE_URL } from '$env/static/public';
|
5 |
|
6 |
+
$: streamId = $lcmLiveState?.streamId;
|
7 |
+
$: {
|
8 |
+
console.log('streamId', streamId);
|
9 |
+
}
|
10 |
</script>
|
11 |
|
12 |
<div class="relative overflow-hidden rounded-lg border border-slate-300">
|
|
|
17 |
<div class="aspect-square w-full rounded-lg" />
|
18 |
{/if}
|
19 |
<div class="absolute left-0 top-0 aspect-square w-1/4">
|
20 |
+
<slot />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
</div>
|
22 |
</div>
|
frontend/src/lib/components/InputRange.svelte
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
-
<div class="grid grid-cols-4 items-center gap-3">
|
12 |
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
13 |
<input
|
14 |
class="col-span-2 h-2 w-full cursor-pointer appearance-none rounded-lg bg-gray-300 dark:bg-gray-500"
|
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
+
<div class="grid max-w-md grid-cols-4 items-center gap-3">
|
12 |
<label class="text-sm font-medium" for={params.id}>{params?.title}</label>
|
13 |
<input
|
14 |
class="col-span-2 h-2 w-full cursor-pointer appearance-none rounded-lg bg-gray-300 dark:bg-gray-500"
|
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
@@ -6,9 +6,9 @@
|
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
8 |
import Checkbox from './Checkbox.svelte';
|
|
|
9 |
|
10 |
export let pipelineParams: FieldProps[];
|
11 |
-
export let pipelineValues = {} as any;
|
12 |
|
13 |
$: advanceOptions = pipelineParams?.filter((e) => e?.hide == true);
|
14 |
$: featuredOptions = pipelineParams?.filter((e) => e?.hide !== true);
|
@@ -18,13 +18,13 @@
|
|
18 |
{#if featuredOptions}
|
19 |
{#each featuredOptions as params}
|
20 |
{#if params.field === FieldType.range}
|
21 |
-
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
22 |
{:else if params.field === FieldType.seed}
|
23 |
-
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
24 |
{:else if params.field === FieldType.textarea}
|
25 |
-
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
26 |
{:else if params.field === FieldType.checkbox}
|
27 |
-
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
28 |
{/if}
|
29 |
{/each}
|
30 |
{/if}
|
@@ -32,17 +32,19 @@
|
|
32 |
|
33 |
<details open>
|
34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
35 |
-
<div
|
|
|
|
|
36 |
{#if advanceOptions}
|
37 |
{#each advanceOptions as params}
|
38 |
{#if params.field === FieldType.range}
|
39 |
-
<InputRange {params} bind:value={pipelineValues[params.id]}></InputRange>
|
40 |
{:else if params.field === FieldType.seed}
|
41 |
-
<SeedInput bind:value={pipelineValues[params.id]}></SeedInput>
|
42 |
{:else if params.field === FieldType.textarea}
|
43 |
-
<TextArea {params} bind:value={pipelineValues[params.id]}></TextArea>
|
44 |
{:else if params.field === FieldType.checkbox}
|
45 |
-
<Checkbox {params} bind:value={pipelineValues[params.id]}></Checkbox>
|
46 |
{/if}
|
47 |
{/each}
|
48 |
{/if}
|
|
|
6 |
import SeedInput from './SeedInput.svelte';
|
7 |
import TextArea from './TextArea.svelte';
|
8 |
import Checkbox from './Checkbox.svelte';
|
9 |
+
import { pipelineValues } from '$lib/store';
|
10 |
|
11 |
export let pipelineParams: FieldProps[];
|
|
|
12 |
|
13 |
$: advanceOptions = pipelineParams?.filter((e) => e?.hide == true);
|
14 |
$: featuredOptions = pipelineParams?.filter((e) => e?.hide !== true);
|
|
|
18 |
{#if featuredOptions}
|
19 |
{#each featuredOptions as params}
|
20 |
{#if params.field === FieldType.range}
|
21 |
+
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
22 |
{:else if params.field === FieldType.seed}
|
23 |
+
<SeedInput bind:value={$pipelineValues[params.id]}></SeedInput>
|
24 |
{:else if params.field === FieldType.textarea}
|
25 |
+
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
26 |
{:else if params.field === FieldType.checkbox}
|
27 |
+
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
28 |
{/if}
|
29 |
{/each}
|
30 |
{/if}
|
|
|
32 |
|
33 |
<details open>
|
34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
35 |
+
<div
|
36 |
+
class="grid grid-cols-1 items-center gap-3 {pipelineValues.length > 5 ? 'sm:grid-cols-2' : ''}"
|
37 |
+
>
|
38 |
{#if advanceOptions}
|
39 |
{#each advanceOptions as params}
|
40 |
{#if params.field === FieldType.range}
|
41 |
+
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
42 |
{:else if params.field === FieldType.seed}
|
43 |
+
<SeedInput bind:value={$pipelineValues[params.id]}></SeedInput>
|
44 |
{:else if params.field === FieldType.textarea}
|
45 |
+
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
46 |
{:else if params.field === FieldType.checkbox}
|
47 |
+
<Checkbox {params} bind:value={$pipelineValues[params.id]}></Checkbox>
|
48 |
{/if}
|
49 |
{/each}
|
50 |
{/if}
|
frontend/src/lib/components/VideoInput.svelte
CHANGED
@@ -62,12 +62,25 @@
|
|
62 |
}
|
63 |
</script>
|
64 |
|
65 |
-
<
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
}
|
63 |
</script>
|
64 |
|
65 |
+
<div class="relative z-10 aspect-square w-full object-cover">
|
66 |
+
<video
|
67 |
+
class="aspect-square w-full object-cover"
|
68 |
+
bind:this={videoEl}
|
69 |
+
playsinline
|
70 |
+
autoplay
|
71 |
+
muted
|
72 |
+
loop
|
73 |
+
use:srcObject={mediaStream}
|
74 |
+
></video>
|
75 |
+
</div>
|
76 |
+
<svg
|
77 |
+
xmlns="http://www.w3.org/2000/svg"
|
78 |
+
viewBox="0 0 448 448"
|
79 |
+
width="100"
|
80 |
+
class="absolute top-0 z-0 w-full p-4 opacity-20"
|
81 |
+
>
|
82 |
+
<path
|
83 |
+
fill="currentColor"
|
84 |
+
d="M224 256a128 128 0 1 0 0-256 128 128 0 1 0 0 256zm-45.7 48A178.3 178.3 0 0 0 0 482.3 29.7 29.7 0 0 0 29.7 512h388.6a29.7 29.7 0 0 0 29.7-29.7c0-98.5-79.8-178.3-178.3-178.3h-91.4z"
|
85 |
+
/>
|
86 |
+
</svg>
|
frontend/src/lib/lcmLive.ts
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import { writable } from 'svelte/store';
|
2 |
-
import {
|
3 |
|
4 |
export const isStreaming = writable(false);
|
5 |
export const isLCMRunning = writable(false);
|
@@ -26,55 +26,75 @@ export const lcmLiveState = writable(initialState);
|
|
26 |
let websocket: WebSocket | null = null;
|
27 |
export const lcmLiveActions = {
|
28 |
async start() {
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
}:${window.location.host}/ws`;
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
lcmLiveState.update((state) => ({
|
41 |
...state,
|
42 |
-
status: LCMLiveStatus.DISCONNECTED
|
|
|
43 |
}));
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
websocket.onerror = (err) => {
|
48 |
-
console.error(err);
|
49 |
-
};
|
50 |
-
websocket.onmessage = (event) => {
|
51 |
-
const data = JSON.parse(event.data);
|
52 |
-
console.log("WS: ", data);
|
53 |
-
switch (data.status) {
|
54 |
-
case "success":
|
55 |
-
break;
|
56 |
-
case "start":
|
57 |
-
const streamId = data.userId;
|
58 |
-
lcmLiveState.update((state) => ({
|
59 |
-
...state,
|
60 |
-
status: LCMLiveStatus.CONNECTED,
|
61 |
-
streamId: streamId,
|
62 |
-
}));
|
63 |
-
break;
|
64 |
-
case "timeout":
|
65 |
-
console.log("timeout");
|
66 |
-
case "error":
|
67 |
-
console.log(data.message);
|
68 |
-
isLCMRunning.set(false);
|
69 |
-
}
|
70 |
-
};
|
71 |
-
lcmLiveState.update((state) => ({
|
72 |
-
...state,
|
73 |
-
}));
|
74 |
-
} catch (err) {
|
75 |
-
console.error(err);
|
76 |
-
isLCMRunning.set(false);
|
77 |
-
}
|
78 |
},
|
79 |
send(data: Blob | { [key: string]: any }) {
|
80 |
if (websocket && websocket.readyState === WebSocket.OPEN) {
|
|
|
1 |
import { writable } from 'svelte/store';
|
2 |
+
import { PUBLIC_WSS_URL } from '$env/static/public';
|
3 |
|
4 |
export const isStreaming = writable(false);
|
5 |
export const isLCMRunning = writable(false);
|
|
|
26 |
let websocket: WebSocket | null = null;
|
27 |
export const lcmLiveActions = {
|
28 |
async start() {
|
29 |
+
return new Promise((resolve, reject) => {
|
30 |
|
31 |
+
try {
|
32 |
+
const websocketURL = PUBLIC_WSS_URL ? PUBLIC_WSS_URL : `${window.location.protocol === "https:" ? "wss" : "ws"
|
33 |
+
}:${window.location.host}/ws`;
|
|
|
34 |
|
35 |
+
websocket = new WebSocket(websocketURL);
|
36 |
+
websocket.onopen = () => {
|
37 |
+
console.log("Connected to websocket");
|
38 |
+
};
|
39 |
+
websocket.onclose = () => {
|
40 |
+
lcmLiveState.update((state) => ({
|
41 |
+
...state,
|
42 |
+
status: LCMLiveStatus.DISCONNECTED
|
43 |
+
}));
|
44 |
+
console.log("Disconnected from websocket");
|
45 |
+
isLCMRunning.set(false);
|
46 |
+
};
|
47 |
+
websocket.onerror = (err) => {
|
48 |
+
console.error(err);
|
49 |
+
};
|
50 |
+
websocket.onmessage = (event) => {
|
51 |
+
const data = JSON.parse(event.data);
|
52 |
+
console.log("WS: ", data);
|
53 |
+
switch (data.status) {
|
54 |
+
case "success":
|
55 |
+
break;
|
56 |
+
case "start":
|
57 |
+
const streamId = data.userId;
|
58 |
+
lcmLiveState.update((state) => ({
|
59 |
+
...state,
|
60 |
+
status: LCMLiveStatus.CONNECTED,
|
61 |
+
streamId: streamId,
|
62 |
+
}));
|
63 |
+
isLCMRunning.set(true);
|
64 |
+
resolve(streamId);
|
65 |
+
break;
|
66 |
+
case "timeout":
|
67 |
+
console.log("timeout");
|
68 |
+
isLCMRunning.set(false);
|
69 |
+
lcmLiveState.update((state) => ({
|
70 |
+
...state,
|
71 |
+
status: LCMLiveStatus.DISCONNECTED,
|
72 |
+
streamId: null,
|
73 |
+
}));
|
74 |
+
reject("timeout");
|
75 |
+
case "error":
|
76 |
+
console.log(data.message);
|
77 |
+
isLCMRunning.set(false);
|
78 |
+
lcmLiveState.update((state) => ({
|
79 |
+
...state,
|
80 |
+
status: LCMLiveStatus.DISCONNECTED,
|
81 |
+
streamId: null,
|
82 |
+
}));
|
83 |
+
reject(data.message);
|
84 |
+
}
|
85 |
+
};
|
86 |
+
|
87 |
+
} catch (err) {
|
88 |
+
console.error(err);
|
89 |
+
isLCMRunning.set(false);
|
90 |
lcmLiveState.update((state) => ({
|
91 |
...state,
|
92 |
+
status: LCMLiveStatus.DISCONNECTED,
|
93 |
+
streamId: null,
|
94 |
}));
|
95 |
+
reject(err);
|
96 |
+
}
|
97 |
+
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
},
|
99 |
send(data: Blob | { [key: string]: any }) {
|
100 |
if (websocket && websocket.readyState === WebSocket.OPEN) {
|
frontend/src/lib/store.ts
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import { writable, type Writable } from 'svelte/store';
|
3 |
+
|
4 |
+
export const pipelineValues = writable({});
|
frontend/src/lib/types.ts
CHANGED
@@ -4,6 +4,11 @@ export const enum FieldType {
|
|
4 |
textarea = "textarea",
|
5 |
checkbox = "checkbox",
|
6 |
}
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
export interface FieldProps {
|
9 |
default: number | string;
|
@@ -19,5 +24,7 @@ export interface FieldProps {
|
|
19 |
export interface PipelineInfo {
|
20 |
name: string;
|
21 |
description: string;
|
22 |
-
|
|
|
|
|
23 |
}
|
|
|
4 |
textarea = "textarea",
|
5 |
checkbox = "checkbox",
|
6 |
}
|
7 |
+
export const enum PipelineMode {
|
8 |
+
image = "image",
|
9 |
+
video = "video",
|
10 |
+
text = "text",
|
11 |
+
}
|
12 |
|
13 |
export interface FieldProps {
|
14 |
default: number | string;
|
|
|
24 |
export interface PipelineInfo {
|
25 |
name: string;
|
26 |
description: string;
|
27 |
+
input_mode: {
|
28 |
+
default: PipelineMode;
|
29 |
+
}
|
30 |
}
|
frontend/src/routes/+page.svelte
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import { onMount } from 'svelte';
|
3 |
import { PUBLIC_BASE_URL } from '$env/static/public';
|
4 |
import type { FieldProps, PipelineInfo } from '$lib/types';
|
|
|
5 |
import ImagePlayer from '$lib/components/ImagePlayer.svelte';
|
6 |
import VideoInput from '$lib/components/VideoInput.svelte';
|
7 |
import Button from '$lib/components/Button.svelte';
|
@@ -14,10 +15,12 @@
|
|
14 |
isMediaStreaming,
|
15 |
onFrameChangeStore
|
16 |
} from '$lib/mediaStream';
|
|
|
17 |
|
18 |
let pipelineParams: FieldProps[];
|
19 |
let pipelineInfo: PipelineInfo;
|
20 |
-
let
|
|
|
21 |
|
22 |
onMount(() => {
|
23 |
getSettings();
|
@@ -27,89 +30,73 @@
|
|
27 |
const settings = await fetch(`${PUBLIC_BASE_URL}/settings`).then((r) => r.json());
|
28 |
pipelineParams = Object.values(settings.input_params.properties);
|
29 |
pipelineInfo = settings.info.properties;
|
|
|
|
|
30 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
31 |
console.log('PARAMS', pipelineParams);
|
32 |
console.log('SETTINGS', pipelineInfo);
|
33 |
}
|
|
|
34 |
|
35 |
-
//
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
// }
|
41 |
-
// $: {
|
42 |
-
// console.log('mediaStreamState', $mediaStreamState);
|
43 |
-
// }
|
44 |
-
// $: if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
45 |
-
// lcmLiveActions.send(pipelineValues);
|
46 |
-
// }
|
47 |
-
onFrameChangeStore.subscribe(async (frame) => {
|
48 |
-
if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
49 |
-
lcmLiveActions.send(pipelineValues);
|
50 |
-
lcmLiveActions.send(frame.blob);
|
51 |
}
|
52 |
-
}
|
53 |
-
let startBt: Button;
|
54 |
-
let stopBt: Button;
|
55 |
-
let snapShotBt: Button;
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
async function toggleLcmLive() {
|
58 |
if (!$isLCMRunning) {
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
} else {
|
63 |
-
|
|
|
|
|
64 |
lcmLiveActions.stop();
|
65 |
}
|
66 |
}
|
67 |
-
async function startLcmLive() {
|
68 |
-
try {
|
69 |
-
$isLCMRunning = true;
|
70 |
-
// const res = await lcmLive.start();
|
71 |
-
$isLCMRunning = false;
|
72 |
-
// if (res.status === "timeout")
|
73 |
-
// toggleMessage("success")
|
74 |
-
} catch (err) {
|
75 |
-
console.log(err);
|
76 |
-
// toggleMessage("error")
|
77 |
-
$isLCMRunning = false;
|
78 |
-
}
|
79 |
-
}
|
80 |
-
async function stopLcmLive() {
|
81 |
-
// await lcmLive.stop();
|
82 |
-
$isLCMRunning = false;
|
83 |
-
}
|
84 |
</script>
|
85 |
|
86 |
<div class="fixed right-2 top-2 max-w-xs rounded-lg p-4 text-center text-sm font-bold" id="error" />
|
87 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
88 |
<article class="flex- mx-auto max-w-xl text-center">
|
89 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
90 |
-
<p class="text-sm">
|
91 |
This demo showcases
|
92 |
<a
|
93 |
-
href="https://huggingface.co/
|
94 |
target="_blank"
|
95 |
-
class="text-blue-500 underline hover:no-underline">LCM</a
|
96 |
>
|
97 |
Image to Image pipeline using
|
98 |
<a
|
99 |
-
href="https://
|
100 |
target="_blank"
|
101 |
class="text-blue-500 underline hover:no-underline">Diffusers</a
|
102 |
> with a MJPEG stream server.
|
103 |
</p>
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
</article>
|
114 |
{#if pipelineParams}
|
115 |
<header>
|
@@ -122,7 +109,7 @@
|
|
122 |
> syntax.
|
123 |
</p>
|
124 |
</header>
|
125 |
-
<PipelineOptions {pipelineParams}
|
126 |
<div class="flex gap-3">
|
127 |
<Button on:click={toggleLcmLive}>
|
128 |
{#if $isLCMRunning}
|
@@ -135,7 +122,9 @@
|
|
135 |
</div>
|
136 |
|
137 |
<ImagePlayer>
|
138 |
-
|
|
|
|
|
139 |
</ImagePlayer>
|
140 |
{:else}
|
141 |
<!-- loading -->
|
|
|
2 |
import { onMount } from 'svelte';
|
3 |
import { PUBLIC_BASE_URL } from '$env/static/public';
|
4 |
import type { FieldProps, PipelineInfo } from '$lib/types';
|
5 |
+
import { PipelineMode } from '$lib/types';
|
6 |
import ImagePlayer from '$lib/components/ImagePlayer.svelte';
|
7 |
import VideoInput from '$lib/components/VideoInput.svelte';
|
8 |
import Button from '$lib/components/Button.svelte';
|
|
|
15 |
isMediaStreaming,
|
16 |
onFrameChangeStore
|
17 |
} from '$lib/mediaStream';
|
18 |
+
import { pipelineValues } from '$lib/store';
|
19 |
|
20 |
let pipelineParams: FieldProps[];
|
21 |
let pipelineInfo: PipelineInfo;
|
22 |
+
let isImageMode: boolean = false;
|
23 |
+
let maxQueueSize: number = 0;
|
24 |
|
25 |
onMount(() => {
|
26 |
getSettings();
|
|
|
30 |
const settings = await fetch(`${PUBLIC_BASE_URL}/settings`).then((r) => r.json());
|
31 |
pipelineParams = Object.values(settings.input_params.properties);
|
32 |
pipelineInfo = settings.info.properties;
|
33 |
+
isImageMode = pipelineInfo.input_mode.default === PipelineMode.image;
|
34 |
+
maxQueueSize = settings.max_queue_size;
|
35 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
36 |
console.log('PARAMS', pipelineParams);
|
37 |
console.log('SETTINGS', pipelineInfo);
|
38 |
}
|
39 |
+
console.log('isImageMode', isImageMode);
|
40 |
|
41 |
+
// send Webcam stream to LCM if image mode
|
42 |
+
$: {
|
43 |
+
if (isImageMode && $lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
44 |
+
lcmLiveActions.send($pipelineValues);
|
45 |
+
lcmLiveActions.send($onFrameChangeStore.blob);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
}
|
47 |
+
}
|
|
|
|
|
|
|
48 |
|
49 |
+
// send Webcam stream to LCM
|
50 |
+
$: {
|
51 |
+
if ($lcmLiveState.status === LCMLiveStatus.CONNECTED) {
|
52 |
+
lcmLiveActions.send($pipelineValues);
|
53 |
+
}
|
54 |
+
}
|
55 |
async function toggleLcmLive() {
|
56 |
if (!$isLCMRunning) {
|
57 |
+
if (isImageMode) {
|
58 |
+
await mediaStreamActions.enumerateDevices();
|
59 |
+
await mediaStreamActions.start();
|
60 |
+
}
|
61 |
+
await lcmLiveActions.start();
|
62 |
} else {
|
63 |
+
if (isImageMode) {
|
64 |
+
mediaStreamActions.stop();
|
65 |
+
}
|
66 |
lcmLiveActions.stop();
|
67 |
}
|
68 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
</script>
|
70 |
|
71 |
<div class="fixed right-2 top-2 max-w-xs rounded-lg p-4 text-center text-sm font-bold" id="error" />
|
72 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
73 |
<article class="flex- mx-auto max-w-xl text-center">
|
74 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
75 |
+
<p class="py-2 text-sm">
|
76 |
This demo showcases
|
77 |
<a
|
78 |
+
href="https://huggingface.co/blog/lcm_lora"
|
79 |
target="_blank"
|
80 |
+
class="text-blue-500 underline hover:no-underline">LCM LoRA</a
|
81 |
>
|
82 |
Image to Image pipeline using
|
83 |
<a
|
84 |
+
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
|
85 |
target="_blank"
|
86 |
class="text-blue-500 underline hover:no-underline">Diffusers</a
|
87 |
> with a MJPEG stream server.
|
88 |
</p>
|
89 |
+
{#if maxQueueSize > 0}
|
90 |
+
<p class="text-sm">
|
91 |
+
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU,
|
92 |
+
affecting real-time performance. Maximum queue size is {maxQueueSize}.
|
93 |
+
<a
|
94 |
+
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
95 |
+
target="_blank"
|
96 |
+
class="text-blue-500 underline hover:no-underline">Duplicate</a
|
97 |
+
> and run it on your own GPU.
|
98 |
+
</p>
|
99 |
+
{/if}
|
100 |
</article>
|
101 |
{#if pipelineParams}
|
102 |
<header>
|
|
|
109 |
> syntax.
|
110 |
</p>
|
111 |
</header>
|
112 |
+
<PipelineOptions {pipelineParams}></PipelineOptions>
|
113 |
<div class="flex gap-3">
|
114 |
<Button on:click={toggleLcmLive}>
|
115 |
{#if $isLCMRunning}
|
|
|
122 |
</div>
|
123 |
|
124 |
<ImagePlayer>
|
125 |
+
{#if isImageMode}
|
126 |
+
<VideoInput></VideoInput>
|
127 |
+
{/if}
|
128 |
</ImagePlayer>
|
129 |
{:else}
|
130 |
<!-- loading -->
|
pipelines/controlnet.py
CHANGED
@@ -28,6 +28,7 @@ class Pipeline:
|
|
28 |
class Info(BaseModel):
|
29 |
name: str = "txt2img"
|
30 |
description: str = "Generates an image from a text prompt"
|
|
|
31 |
|
32 |
class InputParams(BaseModel):
|
33 |
prompt: str = Field(
|
@@ -125,7 +126,6 @@ class Pipeline:
|
|
125 |
hide=True,
|
126 |
id="debug_canny",
|
127 |
)
|
128 |
-
image: bool = True
|
129 |
|
130 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
131 |
controlnet_canny = ControlNetModel.from_pretrained(
|
|
|
28 |
class Info(BaseModel):
|
29 |
name: str = "txt2img"
|
30 |
description: str = "Generates an image from a text prompt"
|
31 |
+
input_mode: str = "image"
|
32 |
|
33 |
class InputParams(BaseModel):
|
34 |
prompt: str = Field(
|
|
|
126 |
hide=True,
|
127 |
id="debug_canny",
|
128 |
)
|
|
|
129 |
|
130 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
131 |
controlnet_canny = ControlNetModel.from_pretrained(
|
pipelines/txt2img.py
CHANGED
@@ -22,6 +22,7 @@ class Pipeline:
|
|
22 |
class Info(BaseModel):
|
23 |
name: str = "txt2img"
|
24 |
description: str = "Generates an image from a text prompt"
|
|
|
25 |
|
26 |
class InputParams(BaseModel):
|
27 |
prompt: str = Field(
|
@@ -52,9 +53,6 @@ class Pipeline:
|
|
52 |
hide=True,
|
53 |
id="guidance_scale",
|
54 |
)
|
55 |
-
image: bool = Field(
|
56 |
-
True, title="Image", field="checkbox", hide=True, id="image"
|
57 |
-
)
|
58 |
|
59 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
60 |
if args.safety_checker:
|
|
|
22 |
class Info(BaseModel):
|
23 |
name: str = "txt2img"
|
24 |
description: str = "Generates an image from a text prompt"
|
25 |
+
input_mode: str = "text"
|
26 |
|
27 |
class InputParams(BaseModel):
|
28 |
prompt: str = Field(
|
|
|
53 |
hide=True,
|
54 |
id="guidance_scale",
|
55 |
)
|
|
|
|
|
|
|
56 |
|
57 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
58 |
if args.safety_checker:
|
static/controlnet.html
DELETED
@@ -1,427 +0,0 @@
|
|
1 |
-
<!doctype html>
|
2 |
-
<html>
|
3 |
-
|
4 |
-
<head>
|
5 |
-
<meta charset="UTF-8">
|
6 |
-
<title>Real-Time Latent Consistency Model ControlNet</title>
|
7 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
-
<script
|
9 |
-
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
10 |
-
<script src="https://cdn.jsdelivr.net/npm/[email protected]/piexif.min.js"></script>
|
11 |
-
<script src="https://cdn.tailwindcss.com"></script>
|
12 |
-
<style type="text/tailwindcss">
|
13 |
-
.button {
|
14 |
-
@apply bg-gray-700 hover:bg-gray-800 text-white font-normal p-2 rounded disabled:bg-gray-300 dark:disabled:bg-gray-700 disabled:cursor-not-allowed dark:disabled:text-black
|
15 |
-
}
|
16 |
-
</style>
|
17 |
-
<script type="module">
|
18 |
-
const getValue = (id) => {
|
19 |
-
const el = document.querySelector(`${id}`)
|
20 |
-
if (el.type === "checkbox")
|
21 |
-
return el.checked;
|
22 |
-
return el.value;
|
23 |
-
}
|
24 |
-
const startBtn = document.querySelector("#start");
|
25 |
-
const stopBtn = document.querySelector("#stop");
|
26 |
-
const videoEl = document.querySelector("#webcam");
|
27 |
-
const imageEl = document.querySelector("#player");
|
28 |
-
const queueSizeEl = document.querySelector("#queue_size");
|
29 |
-
const errorEl = document.querySelector("#error");
|
30 |
-
const snapBtn = document.querySelector("#snap");
|
31 |
-
const webcamsEl = document.querySelector("#webcams");
|
32 |
-
|
33 |
-
function LCMLive(webcamVideo, liveImage) {
|
34 |
-
let websocket;
|
35 |
-
|
36 |
-
async function start() {
|
37 |
-
return new Promise((resolve, reject) => {
|
38 |
-
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
39 |
-
}:${window.location.host}/ws`;
|
40 |
-
|
41 |
-
const socket = new WebSocket(websocketURL);
|
42 |
-
socket.onopen = () => {
|
43 |
-
console.log("Connected to websocket");
|
44 |
-
};
|
45 |
-
socket.onclose = () => {
|
46 |
-
console.log("Disconnected from websocket");
|
47 |
-
stop();
|
48 |
-
resolve({ "status": "disconnected" });
|
49 |
-
};
|
50 |
-
socket.onerror = (err) => {
|
51 |
-
console.error(err);
|
52 |
-
reject(err);
|
53 |
-
};
|
54 |
-
socket.onmessage = (event) => {
|
55 |
-
const data = JSON.parse(event.data);
|
56 |
-
switch (data.status) {
|
57 |
-
case "success":
|
58 |
-
break;
|
59 |
-
case "start":
|
60 |
-
const userId = data.userId;
|
61 |
-
initVideoStream(userId);
|
62 |
-
break;
|
63 |
-
case "timeout":
|
64 |
-
stop();
|
65 |
-
resolve({ "status": "timeout" });
|
66 |
-
case "error":
|
67 |
-
stop();
|
68 |
-
reject(data.message);
|
69 |
-
|
70 |
-
}
|
71 |
-
};
|
72 |
-
websocket = socket;
|
73 |
-
})
|
74 |
-
}
|
75 |
-
function switchCamera() {
|
76 |
-
const constraints = {
|
77 |
-
audio: false,
|
78 |
-
video: { width: 1024, height: 1024, deviceId: mediaDevices[webcamsEl.value].deviceId }
|
79 |
-
};
|
80 |
-
navigator.mediaDevices
|
81 |
-
.getUserMedia(constraints)
|
82 |
-
.then((mediaStream) => {
|
83 |
-
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
84 |
-
webcamVideo.srcObject = mediaStream;
|
85 |
-
webcamVideo.onloadedmetadata = () => {
|
86 |
-
webcamVideo.play();
|
87 |
-
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
88 |
-
};
|
89 |
-
})
|
90 |
-
.catch((err) => {
|
91 |
-
console.error(`${err.name}: ${err.message}`);
|
92 |
-
});
|
93 |
-
}
|
94 |
-
|
95 |
-
async function videoTimeUpdateHandler() {
|
96 |
-
const dimension = getValue("input[name=dimension]:checked");
|
97 |
-
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
98 |
-
|
99 |
-
const canvas = new OffscreenCanvas(WIDTH, HEIGHT);
|
100 |
-
const videoW = webcamVideo.videoWidth;
|
101 |
-
const videoH = webcamVideo.videoHeight;
|
102 |
-
const aspectRatio = WIDTH / HEIGHT;
|
103 |
-
|
104 |
-
const ctx = canvas.getContext("2d");
|
105 |
-
ctx.drawImage(webcamVideo, videoW / 2 - videoH * aspectRatio / 2, 0, videoH * aspectRatio, videoH, 0, 0, WIDTH, HEIGHT)
|
106 |
-
const blob = await canvas.convertToBlob({ type: "image/jpeg", quality: 1 });
|
107 |
-
websocket.send(blob);
|
108 |
-
websocket.send(JSON.stringify({
|
109 |
-
"seed": getValue("#seed"),
|
110 |
-
"prompt": getValue("#prompt"),
|
111 |
-
"guidance_scale": getValue("#guidance-scale"),
|
112 |
-
"strength": getValue("#strength"),
|
113 |
-
"steps": getValue("#steps"),
|
114 |
-
"lcm_steps": getValue("#lcm_steps"),
|
115 |
-
"width": WIDTH,
|
116 |
-
"height": HEIGHT,
|
117 |
-
"controlnet_scale": getValue("#controlnet_scale"),
|
118 |
-
"controlnet_start": getValue("#controlnet_start"),
|
119 |
-
"controlnet_end": getValue("#controlnet_end"),
|
120 |
-
"canny_low_threshold": getValue("#canny_low_threshold"),
|
121 |
-
"canny_high_threshold": getValue("#canny_high_threshold"),
|
122 |
-
"debug_canny": getValue("#debug_canny")
|
123 |
-
}));
|
124 |
-
}
|
125 |
-
let mediaDevices = [];
|
126 |
-
async function initVideoStream(userId) {
|
127 |
-
liveImage.src = `/stream/${userId}`;
|
128 |
-
await navigator.mediaDevices.enumerateDevices()
|
129 |
-
.then(devices => {
|
130 |
-
const cameras = devices.filter(device => device.kind === 'videoinput');
|
131 |
-
mediaDevices = cameras;
|
132 |
-
webcamsEl.innerHTML = "";
|
133 |
-
cameras.forEach((camera, index) => {
|
134 |
-
const option = document.createElement("option");
|
135 |
-
option.value = index;
|
136 |
-
option.innerText = camera.label;
|
137 |
-
webcamsEl.appendChild(option);
|
138 |
-
option.selected = index === 0;
|
139 |
-
});
|
140 |
-
webcamsEl.addEventListener("change", switchCamera);
|
141 |
-
})
|
142 |
-
.catch(err => {
|
143 |
-
console.error(err);
|
144 |
-
});
|
145 |
-
const constraints = {
|
146 |
-
audio: false,
|
147 |
-
video: { width: 1024, height: 1024, deviceId: mediaDevices[0].deviceId }
|
148 |
-
};
|
149 |
-
navigator.mediaDevices
|
150 |
-
.getUserMedia(constraints)
|
151 |
-
.then((mediaStream) => {
|
152 |
-
webcamVideo.srcObject = mediaStream;
|
153 |
-
webcamVideo.onloadedmetadata = () => {
|
154 |
-
webcamVideo.play();
|
155 |
-
webcamVideo.addEventListener("timeupdate", videoTimeUpdateHandler);
|
156 |
-
};
|
157 |
-
})
|
158 |
-
.catch((err) => {
|
159 |
-
console.error(`${err.name}: ${err.message}`);
|
160 |
-
});
|
161 |
-
}
|
162 |
-
|
163 |
-
|
164 |
-
async function stop() {
|
165 |
-
websocket.close();
|
166 |
-
navigator.mediaDevices.getUserMedia({ video: true }).then((mediaStream) => {
|
167 |
-
mediaStream.getTracks().forEach((track) => track.stop());
|
168 |
-
});
|
169 |
-
webcamVideo.removeEventListener("timeupdate", videoTimeUpdateHandler);
|
170 |
-
webcamsEl.removeEventListener("change", switchCamera);
|
171 |
-
webcamVideo.srcObject = null;
|
172 |
-
}
|
173 |
-
return {
|
174 |
-
start,
|
175 |
-
stop
|
176 |
-
}
|
177 |
-
}
|
178 |
-
function toggleMessage(type) {
|
179 |
-
errorEl.hidden = false;
|
180 |
-
errorEl.scrollIntoView();
|
181 |
-
switch (type) {
|
182 |
-
case "error":
|
183 |
-
errorEl.innerText = "To many users are using the same GPU, please try again later.";
|
184 |
-
errorEl.classList.toggle("bg-red-300", "text-red-900");
|
185 |
-
break;
|
186 |
-
case "success":
|
187 |
-
errorEl.innerText = "Your session has ended, please start a new one.";
|
188 |
-
errorEl.classList.toggle("bg-green-300", "text-green-900");
|
189 |
-
break;
|
190 |
-
}
|
191 |
-
setTimeout(() => {
|
192 |
-
errorEl.hidden = true;
|
193 |
-
}, 2000);
|
194 |
-
}
|
195 |
-
function snapImage() {
|
196 |
-
try {
|
197 |
-
const zeroth = {};
|
198 |
-
const exif = {};
|
199 |
-
const gps = {};
|
200 |
-
zeroth[piexif.ImageIFD.Make] = "LCM Image-to-Image ControNet";
|
201 |
-
zeroth[piexif.ImageIFD.ImageDescription] = `prompt: ${getValue("#prompt")} | seed: ${getValue("#seed")} | guidance_scale: ${getValue("#guidance-scale")} | strength: ${getValue("#strength")} | controlnet_start: ${getValue("#controlnet_start")} | controlnet_end: ${getValue("#controlnet_end")} | lcm_steps: ${getValue("#lcm_steps")} | steps: ${getValue("#steps")}`;
|
202 |
-
zeroth[piexif.ImageIFD.Software] = "https://github.com/radames/Real-Time-Latent-Consistency-Model";
|
203 |
-
exif[piexif.ExifIFD.DateTimeOriginal] = new Date().toISOString();
|
204 |
-
|
205 |
-
const exifObj = { "0th": zeroth, "Exif": exif, "GPS": gps };
|
206 |
-
const exifBytes = piexif.dump(exifObj);
|
207 |
-
|
208 |
-
const canvas = document.createElement("canvas");
|
209 |
-
canvas.width = imageEl.naturalWidth;
|
210 |
-
canvas.height = imageEl.naturalHeight;
|
211 |
-
const ctx = canvas.getContext("2d");
|
212 |
-
ctx.drawImage(imageEl, 0, 0);
|
213 |
-
const dataURL = canvas.toDataURL("image/jpeg");
|
214 |
-
const withExif = piexif.insert(exifBytes, dataURL);
|
215 |
-
|
216 |
-
const a = document.createElement("a");
|
217 |
-
a.href = withExif;
|
218 |
-
a.download = `lcm_txt_2_img${Date.now()}.png`;
|
219 |
-
a.click();
|
220 |
-
} catch (err) {
|
221 |
-
console.log(err);
|
222 |
-
}
|
223 |
-
}
|
224 |
-
|
225 |
-
|
226 |
-
const lcmLive = LCMLive(videoEl, imageEl);
|
227 |
-
startBtn.addEventListener("click", async () => {
|
228 |
-
try {
|
229 |
-
startBtn.disabled = true;
|
230 |
-
snapBtn.disabled = false;
|
231 |
-
const res = await lcmLive.start();
|
232 |
-
startBtn.disabled = false;
|
233 |
-
if (res.status === "timeout")
|
234 |
-
toggleMessage("success")
|
235 |
-
} catch (err) {
|
236 |
-
console.log(err);
|
237 |
-
toggleMessage("error")
|
238 |
-
startBtn.disabled = false;
|
239 |
-
}
|
240 |
-
});
|
241 |
-
stopBtn.addEventListener("click", () => {
|
242 |
-
lcmLive.stop();
|
243 |
-
});
|
244 |
-
window.addEventListener("beforeunload", () => {
|
245 |
-
lcmLive.stop();
|
246 |
-
});
|
247 |
-
snapBtn.addEventListener("click", snapImage);
|
248 |
-
setInterval(() =>
|
249 |
-
fetch("/queue_size")
|
250 |
-
.then((res) => res.json())
|
251 |
-
.then((data) => {
|
252 |
-
queueSizeEl.innerText = data.queue_size;
|
253 |
-
})
|
254 |
-
.catch((err) => {
|
255 |
-
console.log(err);
|
256 |
-
})
|
257 |
-
, 5000);
|
258 |
-
</script>
|
259 |
-
</head>
|
260 |
-
|
261 |
-
<body class="text-black dark:bg-gray-900 dark:text-white">
|
262 |
-
<div class="fixed right-2 top-2 p-4 font-bold text-sm rounded-lg max-w-xs text-center" id="error">
|
263 |
-
</div>
|
264 |
-
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
265 |
-
<article class="text-center max-w-xl mx-auto">
|
266 |
-
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
267 |
-
<h2 class="text-2xl font-bold mb-4">ControlNet</h2>
|
268 |
-
<p class="text-sm">
|
269 |
-
This demo showcases
|
270 |
-
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
271 |
-
class="text-blue-500 underline hover:no-underline">LCM</a> Image to Image pipeline
|
272 |
-
using
|
273 |
-
<a href="https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline"
|
274 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
275 |
-
stream server.
|
276 |
-
</p>
|
277 |
-
<p class="text-sm">
|
278 |
-
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
279 |
-
real-time performance. Maximum queue size is 4. <a
|
280 |
-
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
281 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Duplicate</a> and run it on your
|
282 |
-
own GPU.
|
283 |
-
</p>
|
284 |
-
</article>
|
285 |
-
<div>
|
286 |
-
<h2 class="font-medium">Prompt</h2>
|
287 |
-
<p class="text-sm text-gray-500">
|
288 |
-
Change the prompt to generate different images, accepts <a
|
289 |
-
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" target="_blank"
|
290 |
-
class="text-blue-500 underline hover:no-underline">Compel</a> syntax.
|
291 |
-
</p>
|
292 |
-
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
293 |
-
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
294 |
-
title="Prompt, this is an example, feel free to modify"
|
295 |
-
placeholder="Add your prompt here...">Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5, cinematic, masterpiece</textarea>
|
296 |
-
</div>
|
297 |
-
</div>
|
298 |
-
<div class="">
|
299 |
-
<details>
|
300 |
-
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
301 |
-
<div class="grid grid-cols-3 sm:grid-cols-6 items-center gap-3 py-3">
|
302 |
-
<label for="webcams" class="text-sm font-medium">Camera Options: </label>
|
303 |
-
<select id="webcams" class="text-sm border-2 border-gray-500 rounded-md font-light dark:text-black">
|
304 |
-
</select>
|
305 |
-
<div></div>
|
306 |
-
<label class="text-sm font-medium " for="steps">Inference Steps
|
307 |
-
</label>
|
308 |
-
<input type="range" id="steps" name="steps" min="1" max="20" value="4"
|
309 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
310 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
311 |
-
4</output>
|
312 |
-
<!-- -->
|
313 |
-
<label class="text-sm font-medium" for="lcm_steps">LCM Inference Steps
|
314 |
-
</label>
|
315 |
-
<input type="range" id="lcm_steps" name="lcm_steps" min="2" max="60" value="50"
|
316 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
317 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
318 |
-
50</output>
|
319 |
-
<!-- -->
|
320 |
-
<label class="text-sm font-medium" for="guidance-scale">Guidance Scale
|
321 |
-
</label>
|
322 |
-
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="30" step="0.001"
|
323 |
-
value="8.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
324 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
325 |
-
8.0</output>
|
326 |
-
<!-- -->
|
327 |
-
<label class="text-sm font-medium" for="strength">Strength</label>
|
328 |
-
<input type="range" id="strength" name="strength" min="0.1" max="1" step="0.001" value="0.50"
|
329 |
-
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
330 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
331 |
-
0.5</output>
|
332 |
-
<!-- -->
|
333 |
-
<label class="text-sm font-medium" for="controlnet_scale">ControlNet Condition Scale</label>
|
334 |
-
<input type="range" id="controlnet_scale" name="controlnet_scale" min="0.0" max="1" step="0.001"
|
335 |
-
value="0.80" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
336 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
337 |
-
0.8</output>
|
338 |
-
<!-- -->
|
339 |
-
<label class="text-sm font-medium" for="controlnet_start">ControlNet Guidance Start</label>
|
340 |
-
<input type="range" id="controlnet_start" name="controlnet_start" min="0.0" max="1.0" step="0.001"
|
341 |
-
value="0.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
342 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
343 |
-
0.0</output>
|
344 |
-
<!-- -->
|
345 |
-
<label class="text-sm font-medium" for="controlnet_end">ControlNet Guidance End</label>
|
346 |
-
<input type="range" id="controlnet_end" name="controlnet_end" min="0.0" max="1.0" step="0.001"
|
347 |
-
value="1.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
348 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
349 |
-
1.0</output>
|
350 |
-
<!-- -->
|
351 |
-
<label class="text-sm font-medium" for="canny_low_threshold">Canny Low Threshold</label>
|
352 |
-
<input type="range" id="canny_low_threshold" name="canny_low_threshold" min="0.0" max="1.0"
|
353 |
-
step="0.001" value="0.1"
|
354 |
-
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
355 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
356 |
-
0.1</output>
|
357 |
-
<!-- -->
|
358 |
-
<label class="text-sm font-medium" for="canny_high_threshold">Canny High Threshold</label>
|
359 |
-
<input type="range" id="canny_high_threshold" name="canny_high_threshold" min="0.0" max="1.0"
|
360 |
-
step="0.001" value="0.2"
|
361 |
-
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
362 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
363 |
-
0.2</output>
|
364 |
-
<!-- -->
|
365 |
-
<label class="text-sm font-medium" for="seed">Seed</label>
|
366 |
-
<input type="number" id="seed" name="seed" value="299792458"
|
367 |
-
class="font-light border border-gray-700 text-right rounded-md p-2 dark:text-black">
|
368 |
-
<button
|
369 |
-
onclick="document.querySelector('#seed').value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER)"
|
370 |
-
class="button">
|
371 |
-
Rand
|
372 |
-
</button>
|
373 |
-
<!-- -->
|
374 |
-
<!-- -->
|
375 |
-
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
376 |
-
<div class="col-span-2 flex gap-2">
|
377 |
-
<div class="flex gap-1">
|
378 |
-
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
379 |
-
class="cursor-pointer">
|
380 |
-
<label for="dimension512" class="text-sm cursor-pointer">512x512</label>
|
381 |
-
</div>
|
382 |
-
<div class="flex gap-1">
|
383 |
-
<input type="radio" id="dimension768" name="dimension" value="[768,768]"
|
384 |
-
lass="cursor-pointer">
|
385 |
-
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
386 |
-
</div>
|
387 |
-
</div>
|
388 |
-
<!-- -->
|
389 |
-
<!-- -->
|
390 |
-
<label class="text-sm font-medium" for="debug_canny">Debug Canny</label>
|
391 |
-
<div class="col-span-2 flex gap-2">
|
392 |
-
<input type="checkbox" id="debug_canny" name="debug_canny" class="cursor-pointer">
|
393 |
-
<label for="debug_canny" class="text-sm cursor-pointer"></label>
|
394 |
-
</div>
|
395 |
-
<div></div>
|
396 |
-
<!-- -->
|
397 |
-
</div>
|
398 |
-
</details>
|
399 |
-
</div>
|
400 |
-
<div class="flex gap-3">
|
401 |
-
<button id="start" class="button">
|
402 |
-
Start
|
403 |
-
</button>
|
404 |
-
<button id="stop" class="button">
|
405 |
-
Stop
|
406 |
-
</button>
|
407 |
-
<button id="snap" disabled class="button ml-auto">
|
408 |
-
Snapshot
|
409 |
-
</button>
|
410 |
-
</div>
|
411 |
-
<div class="relative rounded-lg border border-slate-300 overflow-hidden">
|
412 |
-
<img id="player" class="w-full aspect-square rounded-lg"
|
413 |
-
src="">
|
414 |
-
<div class="absolute top-0 left-0 w-1/4 aspect-square">
|
415 |
-
<video id="webcam" class="w-full aspect-square relative z-10 object-cover" playsinline autoplay muted
|
416 |
-
loop></video>
|
417 |
-
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 448" width="100"
|
418 |
-
class="w-full p-4 absolute top-0 opacity-20 z-0">
|
419 |
-
<path fill="currentColor"
|
420 |
-
d="M224 256a128 128 0 1 0 0-256 128 128 0 1 0 0 256zm-45.7 48A178.3 178.3 0 0 0 0 482.3 29.7 29.7 0 0 0 29.7 512h388.6a29.7 29.7 0 0 0 29.7-29.7c0-98.5-79.8-178.3-178.3-178.3h-91.4z" />
|
421 |
-
</svg>
|
422 |
-
</div>
|
423 |
-
</div>
|
424 |
-
</main>
|
425 |
-
</body>
|
426 |
-
|
427 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static/txt2img.html
DELETED
@@ -1,304 +0,0 @@
|
|
1 |
-
<!doctype html>
|
2 |
-
<html>
|
3 |
-
|
4 |
-
<head>
|
5 |
-
<meta charset="UTF-8">
|
6 |
-
<title>Real-Time Latent Consistency Model</title>
|
7 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
-
<script
|
9 |
-
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
10 |
-
<script src="https://cdn.jsdelivr.net/npm/[email protected]/piexif.min.js"></script>
|
11 |
-
<script src="https://cdn.tailwindcss.com"></script>
|
12 |
-
<style type="text/tailwindcss">
|
13 |
-
.button {
|
14 |
-
@apply bg-gray-700 hover:bg-gray-800 text-white font-normal p-2 rounded disabled:bg-gray-300 dark:disabled:bg-gray-700 disabled:cursor-not-allowed dark:disabled:text-black
|
15 |
-
}
|
16 |
-
</style>
|
17 |
-
<script type="module">
|
18 |
-
const getValue = (id) => {
|
19 |
-
const el = document.querySelector(`${id}`)
|
20 |
-
if (el.type === "checkbox")
|
21 |
-
return el.checked;
|
22 |
-
return el.value;
|
23 |
-
}
|
24 |
-
const startBtn = document.querySelector("#start");
|
25 |
-
const stopBtn = document.querySelector("#stop");
|
26 |
-
const videoEl = document.querySelector("#webcam");
|
27 |
-
const imageEl = document.querySelector("#player");
|
28 |
-
const queueSizeEl = document.querySelector("#queue_size");
|
29 |
-
const errorEl = document.querySelector("#error");
|
30 |
-
const snapBtn = document.querySelector("#snap");
|
31 |
-
const paramsEl = document.querySelector("#params");
|
32 |
-
const promptEl = document.querySelector("#prompt");
|
33 |
-
paramsEl.addEventListener("submit", (e) => e.preventDefault());
|
34 |
-
function LCMLive(promptEl, paramsEl, liveImage) {
|
35 |
-
let websocket;
|
36 |
-
|
37 |
-
async function start() {
|
38 |
-
return new Promise((resolve, reject) => {
|
39 |
-
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
40 |
-
}:${window.location.host}/ws`;
|
41 |
-
|
42 |
-
const socket = new WebSocket(websocketURL);
|
43 |
-
socket.onopen = () => {
|
44 |
-
console.log("Connected to websocket");
|
45 |
-
};
|
46 |
-
socket.onclose = () => {
|
47 |
-
console.log("Disconnected from websocket");
|
48 |
-
stop();
|
49 |
-
resolve({ "status": "disconnected" });
|
50 |
-
};
|
51 |
-
socket.onerror = (err) => {
|
52 |
-
console.error(err);
|
53 |
-
reject(err);
|
54 |
-
};
|
55 |
-
socket.onmessage = (event) => {
|
56 |
-
const data = JSON.parse(event.data);
|
57 |
-
switch (data.status) {
|
58 |
-
case "success":
|
59 |
-
break;
|
60 |
-
case "start":
|
61 |
-
const userId = data.userId;
|
62 |
-
initPromptStream(userId);
|
63 |
-
break;
|
64 |
-
case "timeout":
|
65 |
-
stop();
|
66 |
-
resolve({ "status": "timeout" });
|
67 |
-
case "error":
|
68 |
-
stop();
|
69 |
-
reject(data.message);
|
70 |
-
}
|
71 |
-
};
|
72 |
-
websocket = socket;
|
73 |
-
})
|
74 |
-
}
|
75 |
-
|
76 |
-
async function promptUpdateStream(e) {
|
77 |
-
const dimension = getValue("input[name=dimension]:checked");
|
78 |
-
const [WIDTH, HEIGHT] = JSON.parse(dimension);
|
79 |
-
websocket.send(JSON.stringify({
|
80 |
-
"seed": getValue("#seed"),
|
81 |
-
"prompt": getValue("#prompt"),
|
82 |
-
"guidance_scale": getValue("#guidance-scale"),
|
83 |
-
"steps": getValue("#steps"),
|
84 |
-
"lcm_steps": getValue("#lcm_steps"),
|
85 |
-
"width": WIDTH,
|
86 |
-
"height": HEIGHT,
|
87 |
-
}));
|
88 |
-
}
|
89 |
-
function debouceInput(fn, delay) {
|
90 |
-
let timer;
|
91 |
-
return function (...args) {
|
92 |
-
clearTimeout(timer);
|
93 |
-
timer = setTimeout(() => {
|
94 |
-
fn(...args);
|
95 |
-
}, delay);
|
96 |
-
}
|
97 |
-
}
|
98 |
-
const debouncedInput = debouceInput(promptUpdateStream, 200);
|
99 |
-
function initPromptStream(userId) {
|
100 |
-
liveImage.src = `/stream/${userId}`;
|
101 |
-
paramsEl.addEventListener("change", debouncedInput);
|
102 |
-
promptEl.addEventListener("input", debouncedInput);
|
103 |
-
}
|
104 |
-
|
105 |
-
async function stop() {
|
106 |
-
websocket.close();
|
107 |
-
paramsEl.removeEventListener("change", debouncedInput);
|
108 |
-
promptEl.removeEventListener("input", debouncedInput);
|
109 |
-
}
|
110 |
-
return {
|
111 |
-
start,
|
112 |
-
stop
|
113 |
-
}
|
114 |
-
}
|
115 |
-
function toggleMessage(type) {
|
116 |
-
errorEl.hidden = false;
|
117 |
-
errorEl.scrollIntoView();
|
118 |
-
switch (type) {
|
119 |
-
case "error":
|
120 |
-
errorEl.innerText = "To many users are using the same GPU, please try again later.";
|
121 |
-
errorEl.classList.toggle("bg-red-300", "text-red-900");
|
122 |
-
break;
|
123 |
-
case "success":
|
124 |
-
errorEl.innerText = "Your session has ended, please start a new one.";
|
125 |
-
errorEl.classList.toggle("bg-green-300", "text-green-900");
|
126 |
-
break;
|
127 |
-
}
|
128 |
-
setTimeout(() => {
|
129 |
-
errorEl.hidden = true;
|
130 |
-
}, 2000);
|
131 |
-
}
|
132 |
-
function snapImage() {
|
133 |
-
try {
|
134 |
-
const zeroth = {};
|
135 |
-
const exif = {};
|
136 |
-
const gps = {};
|
137 |
-
zeroth[piexif.ImageIFD.Make] = "LCM Text-to-Image";
|
138 |
-
zeroth[piexif.ImageIFD.ImageDescription] = `prompt: ${getValue("#prompt")} | seed: ${getValue("#seed")} | guidance_scale: ${getValue("#guidance-scale")} | lcm_steps: ${getValue("#lcm_steps")} | steps: ${getValue("#steps")}`;
|
139 |
-
zeroth[piexif.ImageIFD.Software] = "https://github.com/radames/Real-Time-Latent-Consistency-Model";
|
140 |
-
|
141 |
-
exif[piexif.ExifIFD.DateTimeOriginal] = new Date().toISOString();
|
142 |
-
|
143 |
-
const exifObj = { "0th": zeroth, "Exif": exif, "GPS": gps };
|
144 |
-
const exifBytes = piexif.dump(exifObj);
|
145 |
-
|
146 |
-
const canvas = document.createElement("canvas");
|
147 |
-
canvas.width = imageEl.naturalWidth;
|
148 |
-
canvas.height = imageEl.naturalHeight;
|
149 |
-
const ctx = canvas.getContext("2d");
|
150 |
-
ctx.drawImage(imageEl, 0, 0);
|
151 |
-
const dataURL = canvas.toDataURL("image/jpeg");
|
152 |
-
const withExif = piexif.insert(exifBytes, dataURL);
|
153 |
-
|
154 |
-
const a = document.createElement("a");
|
155 |
-
a.href = withExif;
|
156 |
-
a.download = `lcm_txt_2_img${Date.now()}.png`;
|
157 |
-
a.click();
|
158 |
-
} catch (err) {
|
159 |
-
console.log(err);
|
160 |
-
}
|
161 |
-
}
|
162 |
-
|
163 |
-
|
164 |
-
const lcmLive = LCMLive(promptEl, paramsEl, imageEl);
|
165 |
-
startBtn.addEventListener("click", async () => {
|
166 |
-
try {
|
167 |
-
startBtn.disabled = true;
|
168 |
-
snapBtn.disabled = false;
|
169 |
-
const res = await lcmLive.start();
|
170 |
-
startBtn.disabled = false;
|
171 |
-
if (res.status === "timeout")
|
172 |
-
toggleMessage("success")
|
173 |
-
} catch (err) {
|
174 |
-
console.log(err);
|
175 |
-
toggleMessage("error")
|
176 |
-
startBtn.disabled = false;
|
177 |
-
}
|
178 |
-
});
|
179 |
-
stopBtn.addEventListener("click", () => {
|
180 |
-
lcmLive.stop();
|
181 |
-
});
|
182 |
-
window.addEventListener("beforeunload", () => {
|
183 |
-
lcmLive.stop();
|
184 |
-
});
|
185 |
-
snapBtn.addEventListener("click", snapImage);
|
186 |
-
setInterval(() =>
|
187 |
-
fetch("/queue_size")
|
188 |
-
.then((res) => res.json())
|
189 |
-
.then((data) => {
|
190 |
-
queueSizeEl.innerText = data.queue_size;
|
191 |
-
})
|
192 |
-
.catch((err) => {
|
193 |
-
console.log(err);
|
194 |
-
})
|
195 |
-
, 5000);
|
196 |
-
</script>
|
197 |
-
</head>
|
198 |
-
|
199 |
-
<body class="text-black dark:bg-gray-900 dark:text-white">
|
200 |
-
<div class="fixed right-2 top-2 p-4 font-bold text-sm rounded-lg max-w-xs text-center" id="error">
|
201 |
-
</div>
|
202 |
-
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
203 |
-
<article class="text-center max-w-xl mx-auto">
|
204 |
-
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
205 |
-
<h2 class="text-2xl font-bold mb-4">Text to Image</h2>
|
206 |
-
<p class="text-sm">
|
207 |
-
This demo showcases
|
208 |
-
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
209 |
-
class="text-blue-500 underline hover:no-underline">LCM</a> Text to Image model
|
210 |
-
using
|
211 |
-
<a href="https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline"
|
212 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
213 |
-
stream server.
|
214 |
-
</p>
|
215 |
-
<p class="text-sm">
|
216 |
-
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
217 |
-
real-time performance. Maximum queue size is 10. <a
|
218 |
-
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
219 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Duplicate</a> and run it on your
|
220 |
-
own GPU.
|
221 |
-
</p>
|
222 |
-
</article>
|
223 |
-
<div>
|
224 |
-
<h2 class="font-medium">Prompt</h2>
|
225 |
-
<p class="text-sm text-gray-500 dark:text-gray-400">
|
226 |
-
Start your session and type your prompt here, accepts
|
227 |
-
<a href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" target="_blank"
|
228 |
-
class="text-blue-500 underline hover:no-underline">Compel</a> syntax.
|
229 |
-
</p>
|
230 |
-
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
231 |
-
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
232 |
-
title=" Start your session and type your prompt here, you can see the result in real-time."
|
233 |
-
placeholder="Add your prompt here...">Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5, cinematic, masterpiece</textarea>
|
234 |
-
</div>
|
235 |
-
|
236 |
-
</div>
|
237 |
-
<div class="">
|
238 |
-
<details>
|
239 |
-
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
240 |
-
<form class="grid grid-cols-3 items-center gap-3 py-3" id="params" action="">
|
241 |
-
<label class="text-sm font-medium" for="dimension">Image Dimensions</label>
|
242 |
-
<div class="col-span-2 flex gap-2">
|
243 |
-
<div class="flex gap-1">
|
244 |
-
<input type="radio" id="dimension512" name="dimension" value="[512,512]" checked
|
245 |
-
class="cursor-pointer">
|
246 |
-
<label for="dimension512" class="text-sm cursor-pointer">512x512</label>
|
247 |
-
</div>
|
248 |
-
<div class="flex gap-1">
|
249 |
-
<input type="radio" id="dimension768" name="dimension" value="[768,768]"
|
250 |
-
lass="cursor-pointer">
|
251 |
-
<label for="dimension768" class="text-sm cursor-pointer">768x768</label>
|
252 |
-
</div>
|
253 |
-
</div>
|
254 |
-
<!-- -->
|
255 |
-
<label class="text-sm font-medium " for="steps">Inference Steps
|
256 |
-
</label>
|
257 |
-
<input type="range" id="steps" name="steps" min="1" max="20" value="4"
|
258 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
259 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
260 |
-
4</output>
|
261 |
-
<!-- -->
|
262 |
-
<label class="text-sm font-medium" for="lcm_steps">LCM Inference Steps
|
263 |
-
</label>
|
264 |
-
<input type="range" id="lcm_steps" name="lcm_steps" min="2" max="60" value="50"
|
265 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
266 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
267 |
-
50</output>
|
268 |
-
<!-- -->
|
269 |
-
<label class="text-sm font-medium" for="guidance-scale">Guidance Scale
|
270 |
-
</label>
|
271 |
-
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="30" step="0.001"
|
272 |
-
value="8.0" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
273 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
274 |
-
8.0</output>
|
275 |
-
<!-- -->
|
276 |
-
<label class="text-sm font-medium" for="seed">Seed</label>
|
277 |
-
<input type="number" id="seed" name="seed" value="299792458"
|
278 |
-
class="font-light border border-gray-700 text-right rounded-md p-2 dark:text-black">
|
279 |
-
<button class="button" onclick="document.querySelector('#seed').value = Math.floor(Math.random() * 1000000000); document.querySelector('#params').dispatchEvent(new Event('change'))">
|
280 |
-
Rand
|
281 |
-
</button>
|
282 |
-
<!-- -->
|
283 |
-
</form>
|
284 |
-
</details>
|
285 |
-
</div>
|
286 |
-
<div class="flex gap-3">
|
287 |
-
<button id="start" class="button">
|
288 |
-
Start
|
289 |
-
</button>
|
290 |
-
<button id="stop" class="button">
|
291 |
-
Stop
|
292 |
-
</button>
|
293 |
-
<button id="snap" disabled class="button ml-auto">
|
294 |
-
Snapshot
|
295 |
-
</button>
|
296 |
-
</div>
|
297 |
-
<div class="relative rounded-lg border border-slate-300 overflow-hidden">
|
298 |
-
<img id="player" class="w-full aspect-square rounded-lg"
|
299 |
-
src="">
|
300 |
-
</div>
|
301 |
-
</main>
|
302 |
-
</body>
|
303 |
-
|
304 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
util.py
CHANGED
@@ -2,6 +2,8 @@ from importlib import import_module
|
|
2 |
from types import ModuleType
|
3 |
from typing import Dict, Any
|
4 |
from pydantic import BaseModel as PydanticBaseModel, Field
|
|
|
|
|
5 |
|
6 |
|
7 |
def get_pipeline_class(pipeline_name: str) -> ModuleType:
|
@@ -16,3 +18,20 @@ def get_pipeline_class(pipeline_name: str) -> ModuleType:
|
|
16 |
raise ValueError(f"'Pipeline' class not found in module '{pipeline_name}'.")
|
17 |
|
18 |
return pipeline_class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from types import ModuleType
|
3 |
from typing import Dict, Any
|
4 |
from pydantic import BaseModel as PydanticBaseModel, Field
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
|
8 |
|
9 |
def get_pipeline_class(pipeline_name: str) -> ModuleType:
|
|
|
18 |
raise ValueError(f"'Pipeline' class not found in module '{pipeline_name}'.")
|
19 |
|
20 |
return pipeline_class
|
21 |
+
|
22 |
+
|
23 |
+
def pil_to_frame(image: Image.Image) -> bytes:
|
24 |
+
frame_data = io.BytesIO()
|
25 |
+
image.save(frame_data, format="JPEG")
|
26 |
+
frame_data = frame_data.getvalue()
|
27 |
+
return (
|
28 |
+
b"--frame\r\n"
|
29 |
+
+ b"Content-Type: image/jpeg\r\n"
|
30 |
+
+ f"Content-Length: {len(frame_data)}\r\n\r\n".encode()
|
31 |
+
+ frame_data
|
32 |
+
+ b"\r\n"
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def is_firefox(user_agent: str) -> bool:
|
37 |
+
return "Firefox" in user_agent
|