Spaces:
Runtime error
Runtime error
fix
Browse files- app.py +120 -30
- requirements.txt +6 -6
app.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
from diffusers import StableDiffusionDepth2ImgPipeline
|
6 |
from pathlib import Path
|
7 |
|
8 |
-
device = torch.device(
|
9 |
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
10 |
"stabilityai/stable-diffusion-2-depth",
|
11 |
torch_dtype=torch.float16,
|
@@ -13,10 +13,14 @@ dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
|
13 |
|
14 |
|
15 |
def pad_image(input_image):
|
16 |
-
pad_w, pad_h =
|
17 |
-
np.array(input_image.size) / 64).astype(int)), axis=0)
|
|
|
|
|
|
|
18 |
im_padded = Image.fromarray(
|
19 |
-
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode=
|
|
|
20 |
w, h = im_padded.size
|
21 |
if w == h:
|
22 |
return im_padded
|
@@ -30,7 +34,17 @@ def pad_image(input_image):
|
|
30 |
return new_image
|
31 |
|
32 |
|
33 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
depth = None
|
35 |
if depth_image is not None:
|
36 |
depth_image = pad_image(depth_image)
|
@@ -56,32 +70,44 @@ def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, see
|
|
56 |
guidance_scale=scale,
|
57 |
num_images_per_prompt=num_samples,
|
58 |
)
|
59 |
-
return result[
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
with gr.Row():
|
65 |
with gr.Column():
|
66 |
gr.Markdown("## Stable Diffusion 2 Depth2Img")
|
67 |
-
gr.HTML(
|
68 |
-
|
|
|
69 |
|
70 |
with gr.Row():
|
71 |
with gr.Column():
|
72 |
input_image = gr.Image(type="pil")
|
73 |
-
|
|
|
74 |
prompt = gr.Textbox(label="Prompt")
|
75 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
76 |
|
77 |
run_button = gr.Button("Run")
|
78 |
with gr.Accordion("Advanced Options", open=False):
|
79 |
num_samples = gr.Slider(
|
80 |
-
label="Images", minimum=1, maximum=4, value=1, step=1
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
scale = gr.Slider(
|
84 |
-
label="Guidance Scale",
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
strength = gr.Slider(
|
87 |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
|
@@ -93,26 +119,90 @@ with block:
|
|
93 |
step=1,
|
94 |
randomize=True,
|
95 |
)
|
96 |
-
with gr.Column():
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
gr.Examples(
|
99 |
examples=[
|
100 |
-
[
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
],
|
108 |
-
inputs=[input_image, prompt, negative_prompt, steps,
|
109 |
-
num_samples, scale, seed, strength, depth_image],
|
110 |
outputs=[gallery],
|
111 |
fn=predict,
|
112 |
cache_examples=True,
|
113 |
)
|
114 |
-
run_button.click(
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
block.
|
|
|
|
5 |
from diffusers import StableDiffusionDepth2ImgPipeline
|
6 |
from pathlib import Path
|
7 |
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
10 |
"stabilityai/stable-diffusion-2-depth",
|
11 |
torch_dtype=torch.float16,
|
|
|
13 |
|
14 |
|
15 |
def pad_image(input_image):
|
16 |
+
pad_w, pad_h = (
|
17 |
+
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
|
18 |
+
* 64
|
19 |
+
- input_image.size
|
20 |
+
)
|
21 |
im_padded = Image.fromarray(
|
22 |
+
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
|
23 |
+
)
|
24 |
w, h = im_padded.size
|
25 |
if w == h:
|
26 |
return im_padded
|
|
|
34 |
return new_image
|
35 |
|
36 |
|
37 |
+
def predict(
|
38 |
+
input_image,
|
39 |
+
prompt,
|
40 |
+
negative_prompt,
|
41 |
+
steps,
|
42 |
+
num_samples,
|
43 |
+
scale,
|
44 |
+
seed,
|
45 |
+
strength,
|
46 |
+
depth_image=None,
|
47 |
+
):
|
48 |
depth = None
|
49 |
if depth_image is not None:
|
50 |
depth_image = pad_image(depth_image)
|
|
|
70 |
guidance_scale=scale,
|
71 |
num_images_per_prompt=num_samples,
|
72 |
)
|
73 |
+
return result["images"]
|
74 |
|
75 |
|
76 |
+
css = """
|
77 |
+
#gallery .fixed-height {
|
78 |
+
max-height: unset;
|
79 |
+
}
|
80 |
+
"""
|
81 |
+
with gr.Blocks(css=css) as block:
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
gr.Markdown("## Stable Diffusion 2 Depth2Img")
|
85 |
+
gr.HTML(
|
86 |
+
"<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
|
87 |
+
)
|
88 |
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
input_image = gr.Image(type="pil")
|
92 |
+
with gr.Accordion("Depth Image Optional", open=False):
|
93 |
+
depth_image = gr.Image(type="pil")
|
94 |
prompt = gr.Textbox(label="Prompt")
|
95 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
96 |
|
97 |
run_button = gr.Button("Run")
|
98 |
with gr.Accordion("Advanced Options", open=False):
|
99 |
num_samples = gr.Slider(
|
100 |
+
label="Images", minimum=1, maximum=4, value=1, step=1
|
101 |
+
)
|
102 |
+
steps = gr.Slider(
|
103 |
+
label="Steps", minimum=1, maximum=50, value=50, step=1
|
104 |
+
)
|
105 |
scale = gr.Slider(
|
106 |
+
label="Guidance Scale",
|
107 |
+
minimum=0.1,
|
108 |
+
maximum=30.0,
|
109 |
+
value=9.0,
|
110 |
+
step=0.1,
|
111 |
)
|
112 |
strength = gr.Slider(
|
113 |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
|
|
|
119 |
step=1,
|
120 |
randomize=True,
|
121 |
)
|
122 |
+
with gr.Column(scale=2):
|
123 |
+
with gr.Row():
|
124 |
+
gallery = gr.Gallery(
|
125 |
+
label="Generated Images",
|
126 |
+
show_label=False,
|
127 |
+
elem_id="gallery",
|
128 |
+
)
|
129 |
gr.Examples(
|
130 |
examples=[
|
131 |
+
[
|
132 |
+
"./examples/baby.jpg",
|
133 |
+
"high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
|
134 |
+
"",
|
135 |
+
50,
|
136 |
+
4,
|
137 |
+
9.0,
|
138 |
+
123123123,
|
139 |
+
0.8,
|
140 |
+
None,
|
141 |
+
],
|
142 |
+
[
|
143 |
+
"./examples/gol.jpg",
|
144 |
+
"professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
|
145 |
+
"",
|
146 |
+
50,
|
147 |
+
4,
|
148 |
+
9.0,
|
149 |
+
1734133747,
|
150 |
+
0.9,
|
151 |
+
None,
|
152 |
+
],
|
153 |
+
[
|
154 |
+
"./examples/bag.jpg",
|
155 |
+
"a photo of a bag of cookies in the bathroom",
|
156 |
+
"low light, dark, blurry",
|
157 |
+
50,
|
158 |
+
4,
|
159 |
+
9.0,
|
160 |
+
1734133747,
|
161 |
+
0.9,
|
162 |
+
"./examples/depth.jpg",
|
163 |
+
],
|
164 |
+
[
|
165 |
+
"./examples/smile_face.jpg",
|
166 |
+
"a hand holding a very spherical orange",
|
167 |
+
"low light, dark, blurry",
|
168 |
+
50,
|
169 |
+
4,
|
170 |
+
6.0,
|
171 |
+
961736534,
|
172 |
+
0.5,
|
173 |
+
"./examples/smile_depth.jpg",
|
174 |
+
],
|
175 |
+
],
|
176 |
+
inputs=[
|
177 |
+
input_image,
|
178 |
+
prompt,
|
179 |
+
negative_prompt,
|
180 |
+
steps,
|
181 |
+
num_samples,
|
182 |
+
scale,
|
183 |
+
seed,
|
184 |
+
strength,
|
185 |
+
depth_image,
|
186 |
],
|
|
|
|
|
187 |
outputs=[gallery],
|
188 |
fn=predict,
|
189 |
cache_examples=True,
|
190 |
)
|
191 |
+
run_button.click(
|
192 |
+
fn=predict,
|
193 |
+
inputs=[
|
194 |
+
input_image,
|
195 |
+
prompt,
|
196 |
+
negative_prompt,
|
197 |
+
steps,
|
198 |
+
num_samples,
|
199 |
+
scale,
|
200 |
+
seed,
|
201 |
+
strength,
|
202 |
+
depth_image,
|
203 |
+
],
|
204 |
+
outputs=[gallery],
|
205 |
+
)
|
206 |
|
207 |
+
block.queue(api_open=False)
|
208 |
+
block.launch(show_api=False)
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
1 |
+
diffusers==0.24.0
|
2 |
+
gradio==4.9.1
|
3 |
+
numpy==1.26.2
|
4 |
+
Pillow==10.1.0
|
5 |
+
Pillow==10.1.0
|
6 |
+
torch==2.1.2
|