import os import openai import PyPDF2 import gradio as gr import docx from openai import OpenAI class CourseGenarator: def __init__(self): openai.api_key = os.getenv("OPENAI_API_KEY") def extract_text_from_file(self,file_path): # Get the file extension file_extension = os.path.splitext(file_path)[1] if file_extension == '.pdf': with open(file_path, 'rb') as file: # Create a PDF file reader object reader = PyPDF2.PdfFileReader(file) # Create an empty string to hold the extracted text extracted_text = "" # Loop through each page in the PDF and extract the text for page_number in range(reader.getNumPages()): page = reader.getPage(page_number) extracted_text += page.extractText() return extracted_text elif file_extension == '.txt': with open(file_path, 'r') as file: # Just read the entire contents of the text file return file.read() elif file_extension == '.docx': doc = docx.Document(file_path) text = [] for paragraph in doc.paragraphs: text.append(paragraph.text) return '\n'.join(text) else: return "Unsupported file type" def response(self,resume_path): resume_path = resume_path.name resume = self.extract_text_from_file(resume_path) # Create a conversation for the OpenAI chat API conversation = [ {"role": "system", "content": "You are a Resume Summarizer."}, {"role": "user", "content": f"""Analyze the Given Resume and Summarize {resume}"""} ] # Call OpenAI GPT-3.5-turbo chat_completion = self.client.chat.completions.create( model = "gpt-3.5-turbo", messages = conversation, max_tokens=500, temperature=0 ) generated_text = chat_completion.choices[0].message.content return generated_text def gradio_interface(self): with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as app: gr.HTML("""
Image

ADOPLE AI


Resume Summarizer

""") with gr.Row(elem_id="col-container"): with gr.Column(): resume = gr.File(label="Resume",elem_classes="heightfit") with gr.Column(): analyse = gr.Button("Analyze") with gr.Column(): result = gr.Textbox(label="Summarized",lines=8) analyse.click(self.response, [resume], result) print(result) app.launch() ques = CourseGenarator() ques.gradio_interface()