Spaces:
Sleeping
Sleeping
# Modified from OpenAI's diffusion repos | |
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py | |
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion | |
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
import numpy as np | |
import torch as th | |
from .gaussian_diffusion import GaussianDiffusion | |
def space_timesteps(num_timesteps, section_counts): | |
""" | |
Create a list of timesteps to use from an original diffusion process, | |
given the number of timesteps we want to take from equally-sized portions | |
of the original process. | |
For example, if there's 300 timesteps and the section counts are [10,15,20] | |
then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
If the stride is a string starting with "ddim", then the fixed striding | |
from the DDIM paper is used, and only one section is allowed. | |
:param num_timesteps: the number of diffusion steps in the original | |
process to divide up. | |
:param section_counts: either a list of numbers, or a string containing | |
comma-separated numbers, indicating the step count | |
per section. As a special case, use "ddimN" where N | |
is a number of steps to use the striding from the | |
DDIM paper. | |
:return: a set of diffusion steps from the original process to use. | |
""" | |
if isinstance(section_counts, str): | |
if section_counts.startswith("ddim"): | |
desired_count = int(section_counts[len("ddim") :]) | |
for i in range(1, num_timesteps): | |
if len(range(0, num_timesteps, i)) == desired_count: | |
return set(range(0, num_timesteps, i)) | |
raise ValueError( | |
f"cannot create exactly {num_timesteps} steps with an integer stride" | |
) | |
section_counts = [int(x) for x in section_counts.split(",")] | |
size_per = num_timesteps // len(section_counts) | |
extra = num_timesteps % len(section_counts) | |
start_idx = 0 | |
all_steps = [] | |
for i, section_count in enumerate(section_counts): | |
size = size_per + (1 if i < extra else 0) | |
if size < section_count: | |
raise ValueError( | |
f"cannot divide section of {size} steps into {section_count}" | |
) | |
if section_count <= 1: | |
frac_stride = 1 | |
else: | |
frac_stride = (size - 1) / (section_count - 1) | |
cur_idx = 0.0 | |
taken_steps = [] | |
for _ in range(section_count): | |
taken_steps.append(start_idx + round(cur_idx)) | |
cur_idx += frac_stride | |
all_steps += taken_steps | |
start_idx += size | |
return set(all_steps) | |
class SpacedDiffusion(GaussianDiffusion): | |
""" | |
A diffusion process which can skip steps in a base diffusion process. | |
:param use_timesteps: a collection (sequence or set) of timesteps from the | |
original diffusion process to retain. | |
:param kwargs: the kwargs to create the base diffusion process. | |
""" | |
def __init__(self, use_timesteps, **kwargs): | |
self.use_timesteps = set(use_timesteps) | |
self.timestep_map = [] | |
self.original_num_steps = len(kwargs["betas"]) | |
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa | |
last_alpha_cumprod = 1.0 | |
new_betas = [] | |
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
if i in self.use_timesteps: | |
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
last_alpha_cumprod = alpha_cumprod | |
self.timestep_map.append(i) | |
kwargs["betas"] = np.array(new_betas) | |
super().__init__(**kwargs) | |
def p_mean_variance( | |
self, model, *args, **kwargs | |
): # pylint: disable=signature-differs | |
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
def training_losses( | |
self, model, *args, **kwargs | |
): # pylint: disable=signature-differs | |
return super().training_losses(self._wrap_model(model), *args, **kwargs) | |
def condition_mean(self, cond_fn, *args, **kwargs): | |
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) | |
def condition_score(self, cond_fn, *args, **kwargs): | |
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) | |
def _wrap_model(self, model): | |
if isinstance(model, _WrappedModel): | |
return model | |
return _WrappedModel( | |
model, self.timestep_map, self.original_num_steps | |
) | |
def _scale_timesteps(self, t): | |
# Scaling is done by the wrapped model. | |
return t | |
class _WrappedModel: | |
def __init__(self, model, timestep_map, original_num_steps): | |
self.model = model | |
self.timestep_map = timestep_map | |
# self.rescale_timesteps = rescale_timesteps | |
self.original_num_steps = original_num_steps | |
def __call__(self, x, ts, **kwargs): | |
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
new_ts = map_tensor[ts] | |
# if self.rescale_timesteps: | |
# new_ts = new_ts.float() * (1000.0 / self.original_num_steps) | |
return self.model(x, new_ts, **kwargs) | |