Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,399 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
#include <ATen/ATen.h>
#include <cuda_fp16.h>
#include <vector>
#include "utils/checks.h"
#include "utils/cuda.cuh"
#include "inplace_abn.h"
#include <ATen/cuda/CUDAContext.h>
// Operations for reduce
struct SumOpH {
__device__ SumOpH(const half *t, int c, int s)
: tensor(t), chn(c), sp(s) {}
__device__ __forceinline__ float operator()(int batch, int plane, int n) {
return __half2float(tensor[(batch * chn + plane) * sp + n]);
}
const half *tensor;
const int chn;
const int sp;
};
struct VarOpH {
__device__ VarOpH(float m, const half *t, int c, int s)
: mean(m), tensor(t), chn(c), sp(s) {}
__device__ __forceinline__ float operator()(int batch, int plane, int n) {
const auto t = __half2float(tensor[(batch * chn + plane) * sp + n]);
return (t - mean) * (t - mean);
}
const float mean;
const half *tensor;
const int chn;
const int sp;
};
struct GradOpH {
__device__ GradOpH(float _weight, float _bias, const half *_z, const half *_dz, int c, int s)
: weight(_weight), bias(_bias), z(_z), dz(_dz), chn(c), sp(s) {}
__device__ __forceinline__ Pair<float> operator()(int batch, int plane, int n) {
float _y = (__half2float(z[(batch * chn + plane) * sp + n]) - bias) / weight;
float _dz = __half2float(dz[(batch * chn + plane) * sp + n]);
return Pair<float>(_dz, _y * _dz);
}
const float weight;
const float bias;
const half *z;
const half *dz;
const int chn;
const int sp;
};
/***********
* mean_var
***********/
__global__ void mean_var_kernel_h(const half *x, float *mean, float *var, int num, int chn, int sp) {
int plane = blockIdx.x;
float norm = 1.f / static_cast<float>(num * sp);
float _mean = reduce<float, SumOpH>(SumOpH(x, chn, sp), plane, num, sp) * norm;
__syncthreads();
float _var = reduce<float, VarOpH>(VarOpH(_mean, x, chn, sp), plane, num, sp) * norm;
if (threadIdx.x == 0) {
mean[plane] = _mean;
var[plane] = _var;
}
}
std::vector<at::Tensor> mean_var_cuda_h(at::Tensor x) {
CHECK_CUDA_INPUT(x);
// Extract dimensions
int64_t num, chn, sp;
get_dims(x, num, chn, sp);
// Prepare output tensors
auto mean = at::empty({chn},x.options().dtype(at::kFloat));
auto var = at::empty({chn},x.options().dtype(at::kFloat));
// Run kernel
dim3 blocks(chn);
dim3 threads(getNumThreads(sp));
auto stream = at::cuda::getCurrentCUDAStream();
mean_var_kernel_h<<<blocks, threads, 0, stream>>>(
reinterpret_cast<half*>(x.data<at::Half>()),
mean.data<float>(),
var.data<float>(),
num, chn, sp);
return {mean, var};
}
/**********
* forward
**********/
__global__ void forward_kernel_h(half *x, const float *mean, const float *var, const float *weight, const float *bias,
bool affine, float eps, int num, int chn, int sp) {
int plane = blockIdx.x;
const float _mean = mean[plane];
const float _var = var[plane];
const float _weight = affine ? abs(weight[plane]) + eps : 1.f;
const float _bias = affine ? bias[plane] : 0.f;
const float mul = rsqrt(_var + eps) * _weight;
for (int batch = 0; batch < num; ++batch) {
for (int n = threadIdx.x; n < sp; n += blockDim.x) {
half *x_ptr = x + (batch * chn + plane) * sp + n;
float _x = __half2float(*x_ptr);
float _y = (_x - _mean) * mul + _bias;
*x_ptr = __float2half(_y);
}
}
}
at::Tensor forward_cuda_h(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias,
bool affine, float eps) {
CHECK_CUDA_INPUT(x);
CHECK_CUDA_INPUT(mean);
CHECK_CUDA_INPUT(var);
CHECK_CUDA_INPUT(weight);
CHECK_CUDA_INPUT(bias);
// Extract dimensions
int64_t num, chn, sp;
get_dims(x, num, chn, sp);
// Run kernel
dim3 blocks(chn);
dim3 threads(getNumThreads(sp));
auto stream = at::cuda::getCurrentCUDAStream();
forward_kernel_h<<<blocks, threads, 0, stream>>>(
reinterpret_cast<half*>(x.data<at::Half>()),
mean.data<float>(),
var.data<float>(),
weight.data<float>(),
bias.data<float>(),
affine, eps, num, chn, sp);
return x;
}
__global__ void edz_eydz_kernel_h(const half *z, const half *dz, const float *weight, const float *bias,
float *edz, float *eydz, bool affine, float eps, int num, int chn, int sp) {
int plane = blockIdx.x;
float _weight = affine ? abs(weight[plane]) + eps : 1.f;
float _bias = affine ? bias[plane] : 0.f;
Pair<float> res = reduce<Pair<float>, GradOpH>(GradOpH(_weight, _bias, z, dz, chn, sp), plane, num, sp);
__syncthreads();
if (threadIdx.x == 0) {
edz[plane] = res.v1;
eydz[plane] = res.v2;
}
}
std::vector<at::Tensor> edz_eydz_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias,
bool affine, float eps) {
CHECK_CUDA_INPUT(z);
CHECK_CUDA_INPUT(dz);
CHECK_CUDA_INPUT(weight);
CHECK_CUDA_INPUT(bias);
// Extract dimensions
int64_t num, chn, sp;
get_dims(z, num, chn, sp);
auto edz = at::empty({chn},z.options().dtype(at::kFloat));
auto eydz = at::empty({chn},z.options().dtype(at::kFloat));
// Run kernel
dim3 blocks(chn);
dim3 threads(getNumThreads(sp));
auto stream = at::cuda::getCurrentCUDAStream();
edz_eydz_kernel_h<<<blocks, threads, 0, stream>>>(
reinterpret_cast<half*>(z.data<at::Half>()),
reinterpret_cast<half*>(dz.data<at::Half>()),
weight.data<float>(),
bias.data<float>(),
edz.data<float>(),
eydz.data<float>(),
affine, eps, num, chn, sp);
return {edz, eydz};
}
__global__ void backward_kernel_h(const half *z, const half *dz, const float *var, const float *weight, const float *bias, const float *edz,
const float *eydz, half *dx, bool affine, float eps, int num, int chn, int sp) {
int plane = blockIdx.x;
float _weight = affine ? abs(weight[plane]) + eps : 1.f;
float _bias = affine ? bias[plane] : 0.f;
float _var = var[plane];
float _edz = edz[plane];
float _eydz = eydz[plane];
float _mul = _weight * rsqrt(_var + eps);
float count = float(num * sp);
for (int batch = 0; batch < num; ++batch) {
for (int n = threadIdx.x; n < sp; n += blockDim.x) {
float _dz = __half2float(dz[(batch * chn + plane) * sp + n]);
float _y = (__half2float(z[(batch * chn + plane) * sp + n]) - _bias) / _weight;
dx[(batch * chn + plane) * sp + n] = __float2half((_dz - _edz / count - _y * _eydz / count) * _mul);
}
}
}
at::Tensor backward_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias,
at::Tensor edz, at::Tensor eydz, bool affine, float eps) {
CHECK_CUDA_INPUT(z);
CHECK_CUDA_INPUT(dz);
CHECK_CUDA_INPUT(var);
CHECK_CUDA_INPUT(weight);
CHECK_CUDA_INPUT(bias);
CHECK_CUDA_INPUT(edz);
CHECK_CUDA_INPUT(eydz);
// Extract dimensions
int64_t num, chn, sp;
get_dims(z, num, chn, sp);
auto dx = at::zeros_like(z);
// Run kernel
dim3 blocks(chn);
dim3 threads(getNumThreads(sp));
auto stream = at::cuda::getCurrentCUDAStream();
backward_kernel_h<<<blocks, threads, 0, stream>>>(
reinterpret_cast<half*>(z.data<at::Half>()),
reinterpret_cast<half*>(dz.data<at::Half>()),
var.data<float>(),
weight.data<float>(),
bias.data<float>(),
edz.data<float>(),
eydz.data<float>(),
reinterpret_cast<half*>(dx.data<at::Half>()),
affine, eps, num, chn, sp);
return dx;
}
__global__ void leaky_relu_backward_impl_h(half *z, half *dz, float slope, int64_t count) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < count; i += blockDim.x * gridDim.x){
float _z = __half2float(z[i]);
if (_z < 0) {
dz[i] = __float2half(__half2float(dz[i]) * slope);
z[i] = __float2half(_z / slope);
}
}
}
void leaky_relu_backward_cuda_h(at::Tensor z, at::Tensor dz, float slope) {
CHECK_CUDA_INPUT(z);
CHECK_CUDA_INPUT(dz);
int64_t count = z.numel();
dim3 threads(getNumThreads(count));
dim3 blocks = (count + threads.x - 1) / threads.x;
auto stream = at::cuda::getCurrentCUDAStream();
leaky_relu_backward_impl_h<<<blocks, threads, 0, stream>>>(
reinterpret_cast<half*>(z.data<at::Half>()),
reinterpret_cast<half*>(dz.data<at::Half>()),
slope, count);
}
|