File size: 8,365 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pdb
import sys
from pathlib import Path

PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
import os

import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from datasets.simple_extractor_dataset import SimpleFolderDataset
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.transforms import transform_logits, get_affine_transform


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Args:
        num_cls: Number of classes
    Returns:
        The color map
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def delete_irregular(logits_result):
    parsing_result = np.argmax(logits_result, axis=2)
    upper_cloth = np.where(parsing_result == 4, 255, 0)
    contours, hierarchy = cv2.findContours(upper_cloth.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for i in range(len(contours)):
        a = cv2.contourArea(contours[i], True)
        area.append(abs(a))
    if len(area) != 0:
        top = area.index(max(area))
        M = cv2.moments(contours[top])
        cY = int(M["m01"] / M["m00"])

    dresses = np.where(parsing_result == 7, 255, 0)
    contours_dress, hierarchy_dress = cv2.findContours(dresses.astype(np.uint8),
                                                       cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area_dress = []
    for j in range(len(contours_dress)):
        a_d = cv2.contourArea(contours_dress[j], True)
        area_dress.append(abs(a_d))
    if len(area_dress) != 0:
        top_dress = area_dress.index(max(area_dress))
        M_dress = cv2.moments(contours_dress[top_dress])
        cY_dress = int(M_dress["m01"] / M_dress["m00"])
    wear_type = "dresses"
    if len(area) != 0:
        if len(area_dress) != 0 and cY_dress > cY:
            irregular_list = np.array([4, 5, 6])
            logits_result[:, :, irregular_list] = -1
        else:
            irregular_list = np.array([5, 6, 7, 8, 9, 10, 12, 13])
            logits_result[:cY, :, irregular_list] = -1
            wear_type = "cloth_pant"
        parsing_result = np.argmax(logits_result, axis=2)
    # pad border
    parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
    return parsing_result, wear_type


def hole_fill(img):
    img_copy = img.copy()
    mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
    cv2.floodFill(img, mask, (0, 0), 255)
    img_inverse = cv2.bitwise_not(img)
    dst = cv2.bitwise_or(img_copy, img_inverse)
    return dst


def refine_mask(mask):
    contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for j in range(len(contours)):
        a_d = cv2.contourArea(contours[j], True)
        area.append(abs(a_d))
    refine_mask = np.zeros_like(mask).astype(np.uint8)
    if len(area) != 0:
        i = area.index(max(area))
        cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
        # keep large area in skin case
        for j in range(len(area)):
            if j != i and area[i] > 2000:
                cv2.drawContours(refine_mask, contours, j, color=255, thickness=-1)
    return refine_mask


def refine_hole(parsing_result_filled, parsing_result, arm_mask):
    filled_hole = cv2.bitwise_and(np.where(parsing_result_filled == 4, 255, 0),
                                  np.where(parsing_result != 4, 255, 0)) - arm_mask * 255
    contours, hierarchy = cv2.findContours(filled_hole, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    refine_hole_mask = np.zeros_like(parsing_result).astype(np.uint8)
    for i in range(len(contours)):
        a = cv2.contourArea(contours[i], True)
        # keep hole > 2000 pixels
        if abs(a) > 2000:
            cv2.drawContours(refine_hole_mask, contours, i, color=255, thickness=-1)
    return refine_hole_mask + arm_mask


def onnx_inference(session, lip_session, input_dir):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
    ])
    dataset = SimpleFolderDataset(root=input_dir, input_size=[512, 512], transform=transform)
    # dataloader = DataLoader(dataset)
    with torch.no_grad():
        # for _, batch in enumerate(tqdm(dataloader, disable=True)):
        image, meta = dataset[0]
        image = image.unsqueeze(0)

        # image, meta = batch
        c = meta['center']
        h = meta['height']
        w = meta['width']
        s = meta['scale']
        output = session.run(None, {"input.1": image.numpy().astype(np.float32)})
        upsample = torch.nn.Upsample(size=[512, 512], mode='bilinear', align_corners=True)
        upsample_output = upsample(torch.from_numpy(output[1][0]).unsqueeze(0))
        upsample_output = upsample_output.squeeze()
        upsample_output = upsample_output.permute(1, 2, 0)  # CHW -> HWC
        logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=[512, 512])
        parsing_result = np.argmax(logits_result, axis=2)
        parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
        # try holefilling the clothes part
        arm_mask = (parsing_result == 14).astype(np.float32) \
            + (parsing_result == 15).astype(np.float32)
        upper_cloth_mask = (parsing_result == 4).astype(np.float32) + arm_mask
        img = np.where(upper_cloth_mask, 255, 0)
        dst = hole_fill(img.astype(np.uint8))
        parsing_result_filled = dst / 255 * 4
        parsing_result_woarm = np.where(parsing_result_filled == 4, parsing_result_filled, parsing_result)
        # add back arm and refined hole between arm and cloth
        refine_hole_mask = refine_hole(parsing_result_filled.astype(np.uint8), parsing_result.astype(np.uint8),
                                       arm_mask.astype(np.uint8))
        parsing_result = np.where(refine_hole_mask, parsing_result, parsing_result_woarm)
        # remove padding
        parsing_result = parsing_result[1:-1, 1:-1]

        dataset_lip = SimpleFolderDataset(root=input_dir, input_size=[473, 473], transform=transform)
        # dataloader_lip = DataLoader(dataset_lip)
        with torch.no_grad():
            # for _, batch in enumerate(tqdm(dataloader_lip, disable=True)):

            image, meta = dataset_lip[0]
            image = image.unsqueeze(0)

            # image, meta = batch
            c = meta['center']
            s = meta['scale']
            w = meta['width']
            h = meta['height']

            output_lip = lip_session.run(None, {"input.1": image.numpy().astype(np.float32)})
            upsample = torch.nn.Upsample(size=[473, 473], mode='bilinear', align_corners=True)
            upsample_output_lip = upsample(torch.from_numpy(output_lip[1][0]).unsqueeze(0))
            upsample_output_lip = upsample_output_lip.squeeze()
            upsample_output_lip = upsample_output_lip.permute(1, 2, 0)  # CHW -> HWC
            logits_result_lip = transform_logits(upsample_output_lip.data.cpu().numpy(), c, s, w, h,
                                                 input_size=[473, 473])
            parsing_result_lip = np.argmax(logits_result_lip, axis=2)
    # add neck parsing result
    neck_mask = np.logical_and(np.logical_not((parsing_result_lip == 13).astype(np.float32)),
                               (parsing_result == 11).astype(np.float32))
    parsing_result = np.where(neck_mask, 18, parsing_result)
    palette = get_palette(19)
    output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
    output_img.putpalette(palette)
    face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32))

    return output_img, face_mask