Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,073 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
#include <torch/extension.h>
#include <vector>
#include "inplace_abn.h"
std::vector<at::Tensor> mean_var(at::Tensor x) {
if (x.is_cuda()) {
if (x.type().scalarType() == at::ScalarType::Half) {
return mean_var_cuda_h(x);
} else {
return mean_var_cuda(x);
}
} else {
return mean_var_cpu(x);
}
}
at::Tensor forward(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias,
bool affine, float eps) {
if (x.is_cuda()) {
if (x.type().scalarType() == at::ScalarType::Half) {
return forward_cuda_h(x, mean, var, weight, bias, affine, eps);
} else {
return forward_cuda(x, mean, var, weight, bias, affine, eps);
}
} else {
return forward_cpu(x, mean, var, weight, bias, affine, eps);
}
}
std::vector<at::Tensor> edz_eydz(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias,
bool affine, float eps) {
if (z.is_cuda()) {
if (z.type().scalarType() == at::ScalarType::Half) {
return edz_eydz_cuda_h(z, dz, weight, bias, affine, eps);
} else {
return edz_eydz_cuda(z, dz, weight, bias, affine, eps);
}
} else {
return edz_eydz_cpu(z, dz, weight, bias, affine, eps);
}
}
at::Tensor backward(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias,
at::Tensor edz, at::Tensor eydz, bool affine, float eps) {
if (z.is_cuda()) {
if (z.type().scalarType() == at::ScalarType::Half) {
return backward_cuda_h(z, dz, var, weight, bias, edz, eydz, affine, eps);
} else {
return backward_cuda(z, dz, var, weight, bias, edz, eydz, affine, eps);
}
} else {
return backward_cpu(z, dz, var, weight, bias, edz, eydz, affine, eps);
}
}
void leaky_relu_forward(at::Tensor z, float slope) {
at::leaky_relu_(z, slope);
}
void leaky_relu_backward(at::Tensor z, at::Tensor dz, float slope) {
if (z.is_cuda()) {
if (z.type().scalarType() == at::ScalarType::Half) {
return leaky_relu_backward_cuda_h(z, dz, slope);
} else {
return leaky_relu_backward_cuda(z, dz, slope);
}
} else {
return leaky_relu_backward_cpu(z, dz, slope);
}
}
void elu_forward(at::Tensor z) {
at::elu_(z);
}
void elu_backward(at::Tensor z, at::Tensor dz) {
if (z.is_cuda()) {
return elu_backward_cuda(z, dz);
} else {
return elu_backward_cpu(z, dz);
}
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("mean_var", &mean_var, "Mean and variance computation");
m.def("forward", &forward, "In-place forward computation");
m.def("edz_eydz", &edz_eydz, "First part of backward computation");
m.def("backward", &backward, "Second part of backward computation");
m.def("leaky_relu_forward", &leaky_relu_forward, "Leaky relu forward computation");
m.def("leaky_relu_backward", &leaky_relu_backward, "Leaky relu backward computation and inversion");
m.def("elu_forward", &elu_forward, "Elu forward computation");
m.def("elu_backward", &elu_backward, "Elu backward computation and inversion");
}
|