Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import cv2 | |
from PIL import Image, ImageDraw | |
import torch | |
label_map = { | |
"background": 0, | |
"hat": 1, | |
"hair": 2, | |
"sunglasses": 3, | |
"upper_clothes": 4, | |
"skirt": 5, | |
"pants": 6, | |
"dress": 7, | |
"belt": 8, | |
"left_shoe": 9, | |
"right_shoe": 10, | |
"head": 11, | |
"left_leg": 12, | |
"right_leg": 13, | |
"left_arm": 14, | |
"right_arm": 15, | |
"bag": 16, | |
"scarf": 17, | |
} | |
def extend_arm_mask(wrist, elbow, scale): | |
wrist = elbow + scale * (wrist - elbow) | |
return wrist | |
def hole_fill(img): | |
img = np.pad(img[1:-1, 1:-1], pad_width=1, mode='constant', constant_values=0) | |
img_copy = img.copy() | |
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8) | |
cv2.floodFill(img, mask, (0, 0), 255) | |
img_inverse = cv2.bitwise_not(img) | |
dst = cv2.bitwise_or(img_copy, img_inverse) | |
return dst | |
def refine_mask(mask): | |
contours, hierarchy = cv2.findContours(mask.astype(np.uint8), | |
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) | |
area = [] | |
for j in range(len(contours)): | |
a_d = cv2.contourArea(contours[j], True) | |
area.append(abs(a_d)) | |
refine_mask = np.zeros_like(mask).astype(np.uint8) | |
if len(area) != 0: | |
i = area.index(max(area)) | |
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1) | |
return refine_mask | |
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384, height=512, radius=5): | |
im_parse = model_parse.resize((width, height), Image.NEAREST) | |
parse_array = np.array(im_parse) | |
if model_type == 'hd': | |
arm_width = 60 | |
elif model_type == 'dc': | |
arm_width = 45 | |
else: | |
raise ValueError("model_type must be \'hd\' or \'dc\'!") | |
parse_head = (parse_array == 1).astype(np.float32) + \ | |
(parse_array == 3).astype(np.float32) + \ | |
(parse_array == 11).astype(np.float32) | |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \ | |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \ | |
(parse_array == label_map["hat"]).astype(np.float32) + \ | |
(parse_array == label_map["sunglasses"]).astype(np.float32) + \ | |
(parse_array == label_map["bag"]).astype(np.float32) | |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32) | |
arms_left = (parse_array == 14).astype(np.float32) | |
arms_right = (parse_array == 15).astype(np.float32) | |
arms = arms_left + arms_right | |
if category == 'dresses': | |
parse_mask = (parse_array == 7).astype(np.float32) + \ | |
(parse_array == 4).astype(np.float32) + \ | |
(parse_array == 5).astype(np.float32) + \ | |
(parse_array == 6).astype(np.float32) | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
elif category == 'upper_body': | |
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32) | |
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \ | |
(parse_array == label_map["pants"]).astype(np.float32) | |
parser_mask_fixed += parser_mask_fixed_lower_cloth | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
elif category == 'lower_body': | |
parse_mask = (parse_array == 6).astype(np.float32) + \ | |
(parse_array == 12).astype(np.float32) + \ | |
(parse_array == 13).astype(np.float32) + \ | |
(parse_array == 5).astype(np.float32) | |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \ | |
(parse_array == 14).astype(np.float32) + \ | |
(parse_array == 15).astype(np.float32) | |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
else: | |
raise NotImplementedError | |
# Load pose points | |
pose_data = keypoint["pose_keypoints_2d"] | |
pose_data = np.array(pose_data) | |
pose_data = pose_data.reshape((-1, 2)) | |
im_arms_left = Image.new('L', (width, height)) | |
im_arms_right = Image.new('L', (width, height)) | |
arms_draw_left = ImageDraw.Draw(im_arms_left) | |
arms_draw_right = ImageDraw.Draw(im_arms_right) | |
if category == 'dresses' or category == 'upper_body': | |
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0) | |
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0) | |
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0) | |
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0) | |
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0) | |
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0) | |
ARM_LINE_WIDTH = int(arm_width / 512 * height) | |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2] | |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2, | |
shoulder_right[1] + ARM_LINE_WIDTH // 2] | |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.: | |
im_arms_right = arms_right | |
else: | |
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2) | |
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2) | |
if wrist_left[0] <= 1. and wrist_left[1] <= 1.: | |
im_arms_left = arms_left | |
else: | |
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2) | |
arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2) | |
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left) | |
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right) | |
parser_mask_fixed += hands_left + hands_right | |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head) | |
parse_mask = cv2.dilate(parse_mask, np.ones((radius, radius), np.uint16), iterations=5) | |
if category == 'dresses' or category == 'upper_body': | |
neck_mask = (parse_array == 18).astype(np.float32) | |
neck_mask = cv2.dilate(neck_mask, np.ones((radius, radius), np.uint16), iterations=1) | |
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head)) | |
parse_mask = np.logical_or(parse_mask, neck_mask) | |
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4) | |
parse_mask += np.logical_or(parse_mask, arm_mask) | |
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask)) | |
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed) | |
inpaint_mask = 1 - parse_mask_total | |
img = np.where(inpaint_mask, 255, 0) | |
dst = hole_fill(img.astype(np.uint8)) | |
dst = refine_mask(dst) | |
inpaint_mask = dst / 255 * 1 | |
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255) | |
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127) | |
return mask, mask_gray | |
def get_tensor(img, h, w, is_mask=False): | |
img = np.array(img.resize((w, h))).astype(np.float32) | |
if not is_mask: | |
img = (img / 127.5) - 1.0 | |
else: | |
img = (img < 128).astype(np.float32)[:,:,None] | |
return torch.from_numpy(img)[None] | |
def get_batch(image, cloth, densepose, agn_img, agn_mask, img_h, img_w): | |
batch = dict() | |
batch["image"] = get_tensor(image, img_h, img_w) | |
batch["cloth"] = get_tensor(cloth, img_h, img_w) | |
batch["image_densepose"] = get_tensor(densepose, img_h, img_w) | |
batch["agn"] = get_tensor(agn_img, img_h, img_w) | |
batch["agn_mask"] = get_tensor(agn_mask, img_h, img_w, is_mask=True) | |
batch["txt"] = "" | |
return batch | |
def tensor2img(x): | |
''' | |
x : [BS x c x H x W] or [c x H x W] | |
''' | |
if x.ndim == 3: | |
x = x.unsqueeze(0) | |
BS, C, H, W = x.shape | |
x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy() | |
x = np.clip(x, -1, 1) | |
x = (x+1)/2 | |
x = np.uint8(x*255.0) | |
if x.shape[-1] == 1: | |
x = np.concatenate([x,x,x], axis=-1) | |
return x | |
def center_crop(image): | |
width, height = image.size | |
new_height = height | |
new_width = height*3/4 | |
left = (width - new_width)/2 | |
top = (height - new_height)/2 | |
right = (width + new_width)/2 | |
bottom = (height + new_height)/2 | |
image = image.crop((left, top, right, bottom)) | |
return image |