Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import unittest | |
from copy import deepcopy | |
import torch | |
from torch import nn | |
from detectron2 import model_zoo | |
from detectron2.config import get_cfg | |
from detectron2.export.torchscript_patch import ( | |
freeze_training_mode, | |
patch_builtin_len, | |
patch_instances, | |
) | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling.proposal_generator.build import build_proposal_generator | |
from detectron2.modeling.roi_heads import ( | |
FastRCNNConvFCHead, | |
KRCNNConvDeconvUpsampleHead, | |
MaskRCNNConvUpsampleHead, | |
StandardROIHeads, | |
build_roi_heads, | |
) | |
from detectron2.projects import point_rend | |
from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes | |
from detectron2.utils.events import EventStorage | |
from detectron2.utils.testing import assert_instances_allclose, random_boxes | |
logger = logging.getLogger(__name__) | |
""" | |
Make sure the losses of ROIHeads/RPN do not change, to avoid | |
breaking the forward logic by mistake. | |
This relies on assumption that pytorch's RNG is stable. | |
""" | |
class ROIHeadsTest(unittest.TestCase): | |
def test_roi_heads(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" | |
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 | |
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" | |
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) | |
cfg.MODEL.MASK_ON = True | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} | |
image_shape = (15, 15) | |
gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) | |
gt_instance0 = Instances(image_shape) | |
gt_instance0.gt_boxes = Boxes(gt_boxes0) | |
gt_instance0.gt_classes = torch.tensor([2, 1]) | |
gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) | |
gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) | |
gt_instance1 = Instances(image_shape) | |
gt_instance1.gt_boxes = Boxes(gt_boxes1) | |
gt_instance1.gt_classes = torch.tensor([1, 2]) | |
gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) | |
gt_instances = [gt_instance0, gt_instance1] | |
proposal_generator = build_proposal_generator(cfg, feature_shape) | |
roi_heads = StandardROIHeads(cfg, feature_shape) | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator(images, features, gt_instances) | |
_, detector_losses = roi_heads(images, features, proposals, gt_instances) | |
detector_losses.update(proposal_losses) | |
expected_losses = { | |
"loss_cls": 4.5253729820251465, | |
"loss_box_reg": 0.009785720147192478, | |
"loss_mask": 0.693184494972229, | |
"loss_rpn_cls": 0.08186662942171097, | |
"loss_rpn_loc": 0.1104838103055954, | |
} | |
succ = all( | |
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) | |
for name in detector_losses.keys() | |
) | |
self.assertTrue( | |
succ, | |
"Losses has changed! New losses: {}".format( | |
{k: v.item() for k, v in detector_losses.items()} | |
), | |
) | |
def test_rroi_heads(self): | |
torch.manual_seed(121) | |
cfg = get_cfg() | |
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" | |
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" | |
cfg.MODEL.ROI_HEADS.NAME = "RROIHeads" | |
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" | |
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 | |
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) | |
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" | |
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated" | |
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1) | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} | |
image_shape = (15, 15) | |
gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32) | |
gt_instance0 = Instances(image_shape) | |
gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0) | |
gt_instance0.gt_classes = torch.tensor([2, 1]) | |
gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32) | |
gt_instance1 = Instances(image_shape) | |
gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1) | |
gt_instance1.gt_classes = torch.tensor([1, 2]) | |
gt_instances = [gt_instance0, gt_instance1] | |
proposal_generator = build_proposal_generator(cfg, feature_shape) | |
roi_heads = build_roi_heads(cfg, feature_shape) | |
with EventStorage(): # capture events in a new storage to discard them | |
proposals, proposal_losses = proposal_generator(images, features, gt_instances) | |
_, detector_losses = roi_heads(images, features, proposals, gt_instances) | |
detector_losses.update(proposal_losses) | |
expected_losses = { | |
"loss_cls": 4.365657806396484, | |
"loss_box_reg": 0.0015851043863222003, | |
"loss_rpn_cls": 0.2427729219198227, | |
"loss_rpn_loc": 0.3646621108055115, | |
} | |
succ = all( | |
torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) | |
for name in detector_losses.keys() | |
) | |
self.assertTrue( | |
succ, | |
"Losses has changed! New losses: {}".format( | |
{k: v.item() for k, v in detector_losses.items()} | |
), | |
) | |
def test_box_head_scriptability(self): | |
input_shape = ShapeSpec(channels=1024, height=14, width=14) | |
box_features = torch.randn(4, 1024, 14, 14) | |
box_head = FastRCNNConvFCHead( | |
input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024] | |
).eval() | |
script_box_head = torch.jit.script(box_head) | |
origin_output = box_head(box_features) | |
script_output = script_box_head(box_features) | |
self.assertTrue(torch.equal(origin_output, script_output)) | |
def test_mask_head_scriptability(self): | |
input_shape = ShapeSpec(channels=1024) | |
mask_features = torch.randn(4, 1024, 14, 14) | |
image_shapes = [(10, 10), (15, 15)] | |
pred_instance0 = Instances(image_shapes[0]) | |
pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64) | |
pred_instance0.pred_classes = pred_classes0 | |
pred_instance1 = Instances(image_shapes[1]) | |
pred_classes1 = torch.tensor([4], dtype=torch.int64) | |
pred_instance1.pred_classes = pred_classes1 | |
mask_head = MaskRCNNConvUpsampleHead( | |
input_shape, num_classes=80, conv_dims=[256, 256] | |
).eval() | |
# pred_instance will be in-place changed during the inference | |
# process of `MaskRCNNConvUpsampleHead` | |
origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1])) | |
fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor} | |
with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances: | |
sciript_mask_head = torch.jit.script(mask_head) | |
pred_instance0 = NewInstances.from_instances(pred_instance0) | |
pred_instance1 = NewInstances.from_instances(pred_instance1) | |
script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1]) | |
for origin_ins, script_ins in zip(origin_outputs, script_outputs): | |
assert_instances_allclose(origin_ins, script_ins, rtol=0) | |
def test_keypoint_head_scriptability(self): | |
input_shape = ShapeSpec(channels=1024, height=14, width=14) | |
keypoint_features = torch.randn(4, 1024, 14, 14) | |
image_shapes = [(10, 10), (15, 15)] | |
pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32) | |
pred_instance0 = Instances(image_shapes[0]) | |
pred_instance0.pred_boxes = Boxes(pred_boxes0) | |
pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32) | |
pred_instance1 = Instances(image_shapes[1]) | |
pred_instance1.pred_boxes = Boxes(pred_boxes1) | |
keypoint_head = KRCNNConvDeconvUpsampleHead( | |
input_shape, num_keypoints=17, conv_dims=[512, 512] | |
).eval() | |
origin_outputs = keypoint_head( | |
keypoint_features, deepcopy([pred_instance0, pred_instance1]) | |
) | |
fields = { | |
"pred_boxes": Boxes, | |
"pred_keypoints": torch.Tensor, | |
"pred_keypoint_heatmaps": torch.Tensor, | |
} | |
with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances: | |
script_keypoint_head = torch.jit.script(keypoint_head) | |
pred_instance0 = NewInstances.from_instances(pred_instance0) | |
pred_instance1 = NewInstances.from_instances(pred_instance1) | |
script_outputs = script_keypoint_head( | |
keypoint_features, [pred_instance0, pred_instance1] | |
) | |
for origin_ins, script_ins in zip(origin_outputs, script_outputs): | |
assert_instances_allclose(origin_ins, script_ins, rtol=0) | |
def test_StandardROIHeads_scriptability(self): | |
cfg = get_cfg() | |
cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" | |
cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 | |
cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" | |
cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) | |
cfg.MODEL.MASK_ON = True | |
cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01 | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01 | |
num_images = 2 | |
images_tensor = torch.rand(num_images, 20, 30) | |
image_sizes = [(10, 10), (20, 30)] | |
images = ImageList(images_tensor, image_sizes) | |
num_channels = 1024 | |
features = {"res4": torch.rand(num_images, num_channels, 1, 2)} | |
feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} | |
roi_heads = StandardROIHeads(cfg, feature_shape).eval() | |
proposal0 = Instances(image_sizes[0]) | |
proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) | |
proposal0.proposal_boxes = Boxes(proposal_boxes0) | |
proposal0.objectness_logits = torch.tensor([0.5, 0.7], dtype=torch.float32) | |
proposal1 = Instances(image_sizes[1]) | |
proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) | |
proposal1.proposal_boxes = Boxes(proposal_boxes1) | |
proposal1.objectness_logits = torch.tensor([0.1, 0.9], dtype=torch.float32) | |
proposals = [proposal0, proposal1] | |
pred_instances, _ = roi_heads(images, features, proposals) | |
fields = { | |
"objectness_logits": torch.Tensor, | |
"proposal_boxes": Boxes, | |
"pred_classes": torch.Tensor, | |
"scores": torch.Tensor, | |
"pred_masks": torch.Tensor, | |
"pred_boxes": Boxes, | |
"pred_keypoints": torch.Tensor, | |
"pred_keypoint_heatmaps": torch.Tensor, | |
} | |
with freeze_training_mode(roi_heads), patch_instances(fields) as new_instances: | |
proposal0 = new_instances.from_instances(proposal0) | |
proposal1 = new_instances.from_instances(proposal1) | |
proposals = [proposal0, proposal1] | |
scripted_rot_heads = torch.jit.script(roi_heads) | |
scripted_pred_instances, _ = scripted_rot_heads(images, features, proposals) | |
for instance, scripted_instance in zip(pred_instances, scripted_pred_instances): | |
assert_instances_allclose(instance, scripted_instance, rtol=0) | |
def test_PointRend_mask_head_tracing(self): | |
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") | |
point_rend.add_pointrend_config(cfg) | |
cfg.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3"] | |
cfg.MODEL.ROI_MASK_HEAD.NAME = "PointRendMaskHead" | |
cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "" | |
cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON = True | |
chan = 256 | |
head = point_rend.PointRendMaskHead( | |
cfg, | |
{ | |
"p2": ShapeSpec(channels=chan, stride=4), | |
"p3": ShapeSpec(channels=chan, stride=8), | |
}, | |
) | |
def gen_inputs(h, w, N): | |
p2 = torch.rand(1, chan, h, w) | |
p3 = torch.rand(1, chan, h // 2, w // 2) | |
boxes = random_boxes(N, max_coord=h) | |
return p2, p3, boxes | |
class Wrap(nn.ModuleDict): | |
def forward(self, p2, p3, boxes): | |
features = { | |
"p2": p2, | |
"p3": p3, | |
} | |
inst = Instances((p2.shape[2] * 4, p2.shape[3] * 4)) | |
inst.pred_boxes = Boxes(boxes) | |
inst.pred_classes = torch.zeros(inst.__len__(), dtype=torch.long) | |
out = self.head(features, [inst])[0] | |
return out.pred_masks | |
model = Wrap({"head": head}) | |
model.eval() | |
with torch.no_grad(), patch_builtin_len(): | |
traced = torch.jit.trace(model, gen_inputs(302, 208, 20)) | |
inputs = gen_inputs(100, 120, 30) | |
out_eager = model(*inputs) | |
out_trace = traced(*inputs) | |
self.assertTrue(torch.allclose(out_eager, out_trace)) | |
if __name__ == "__main__": | |
unittest.main() | |