Spaces:
Running
on
Zero
Running
on
Zero
from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio | |
from preprocess.humanparsing.run_parsing import Parsing | |
from preprocess.openpose.run_openpose import OpenPose | |
import pytorch_lightning as pl | |
import os | |
import sys | |
import time | |
from glob import glob | |
from os.path import join as opj | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import spaces | |
from cldm.model import create_model | |
from cldm.plms_hacked import PLMSSampler | |
from utils_stableviton import get_batch, get_mask_location, tensor2img | |
print("pip import done") | |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
IMG_H = 512 | |
IMG_W = 384 | |
openpose_model_hd = OpenPose(0) | |
openpose_model_hd.preprocessor.body_estimation.model.to('cuda') | |
parsing_model_hd = Parsing(0) | |
densepose_model_hd = DensePose4Gradio( | |
cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml', | |
model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl', | |
) | |
category_dict = ['upperbody', 'lowerbody', 'dress'] | |
category_dict_utils = ['upper_body', 'lower_body', 'dresses'] | |
# #### model init >>>> | |
config = OmegaConf.load("./configs/VITON.yaml") | |
config.model.params.img_H = IMG_H | |
config.model.params.img_W = IMG_W | |
params = config.model.params | |
model = create_model(config_path=None, config=config) | |
model.load_state_dict(torch.load("./checkpoints/VITONHD.ckpt", map_location="cpu")["state_dict"]) | |
model = model.cuda() | |
model.eval() | |
sampler = PLMSSampler(model) | |
# #### model init <<<< | |
def stable_viton_model_hd( | |
batch, | |
n_steps, | |
): | |
z, cond = model.get_input(batch, params.first_stage_key) | |
bs = z.shape[0] | |
c_crossattn = cond["c_crossattn"][0][:bs] | |
if c_crossattn.ndim == 4: | |
c_crossattn = model.get_learned_conditioning(c_crossattn) | |
cond["c_crossattn"] = [c_crossattn] | |
uc_cross = model.get_unconditional_conditioning(bs) | |
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]} | |
uc_full["first_stage_cond"] = cond["first_stage_cond"] | |
for k, v in batch.items(): | |
if isinstance(v, torch.Tensor): | |
batch[k] = v.cuda() | |
sampler.model.batch = batch | |
ts = torch.full((1,), 999, device=z.device, dtype=torch.long) | |
start_code = model.q_sample(z, ts) | |
output, _, _ = sampler.sample( | |
n_steps, | |
bs, | |
(4, IMG_H // 8, IMG_W // 8), | |
cond, | |
x_T=start_code, | |
verbose=False, | |
eta=0.0, | |
unconditional_conditioning=uc_full, | |
) | |
output = model.decode_first_stage(output) | |
output = tensor2img(output) | |
pil_output = Image.fromarray(output) | |
return pil_output | |
# TODO: turn on when final upload | |
def process_hd(vton_img, garm_img, n_steps): | |
model_type = 'hd' | |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress | |
stt = time.time() | |
print('load images... ', end='') | |
garm_img = Image.open(garm_img).resize((IMG_W, IMG_H)) | |
vton_img = Image.open(vton_img).resize((IMG_W, IMG_H)) | |
print('%.2fs' % (time.time() - stt)) | |
stt = time.time() | |
print('get agnostic map... ', end='') | |
keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H))) | |
model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H))) | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) | |
mask = mask.resize((IMG_W, IMG_H), Image.NEAREST) | |
mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map | |
print('%.2fs' % (time.time() - stt)) | |
stt = time.time() | |
print('get densepose... ', end='') | |
vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose | |
densepose = densepose_model_hd.execute(vton_img) # densepose | |
# human_img_arg = _apply_exif_orientation(vton_img.resize((IMG_W, IMG_H))) | |
# human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
# args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) | |
# verbosity = getattr(args, "verbosity", None) | |
# pose_img = args.func(args, human_img_arg) | |
# pose_img = pose_img[:, :, ::-1] | |
# pose_img = Image.fromarray(pose_img).resize((IMG_W, IMG_H)) | |
print('%.2fs' % (time.time() - stt)) | |
batch = get_batch( | |
vton_img, | |
garm_img, | |
densepose, | |
masked_vton_img, | |
mask, | |
IMG_H, | |
IMG_W | |
) | |
sample = stable_viton_model_hd( | |
batch, | |
n_steps | |
) | |
return sample | |
example_path = opj(os.path.dirname(__file__), 'examples') | |
example_model_ps = sorted(glob(opj(example_path, "model/*"))) | |
example_garment_ps = sorted(glob(opj(example_path, "garment/*"))) | |
with gr.Blocks(css='style.css') as demo: | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1>StableVITON Demo πππ</h1> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href='https://arxiv.org/abs/2312.01725'> | |
<img src="https://img.shields.io/badge/arXiv-2312.01725-red"> | |
</a> | |
| |
<a href='https://rlawjdghek.github.io/StableVITON/'> | |
<img src='https://img.shields.io/badge/page-github.io-blue.svg'> | |
</a> | |
| |
<a href='https://github.com/rlawjdghek/StableVITON'> | |
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'> | |
</a> | |
| |
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'> | |
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'> | |
</a> | |
</div> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown("## Experience virtual try-on with your own images!") | |
with gr.Row(): | |
with gr.Column(): | |
vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0]) | |
example = gr.Examples( | |
inputs=vton_img, | |
examples_per_page=14, | |
examples=example_model_ps) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0]) | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=14, | |
examples=example_garment_ps) | |
with gr.Column(): | |
result_gallery = gr.Image(label='Output', show_label=False, scale=1) | |
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", scale=1) | |
with gr.Column(): | |
run_button = gr.Button(value="Run") | |
# TODO: change default values (important!) | |
# n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
n_steps = gr.Slider(label="Steps", minimum=20, maximum=70, value=25, step=1) | |
# guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) | |
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
ips = [vton_img, garm_img, n_steps] | |
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery]) | |
demo.queue().launch() | |