StableVITON / cldm /warping_cldm_network.py
rlawjdghek's picture
stableviton
80ccb59
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding
)
from einops import rearrange
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.util import exists
class StableVITON(UNetModel):
def __init__(
self,
dim_head_denorm=1,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
warp_flow_blks = []
warp_zero_convs = []
self.encode_output_chs = [
320,
320,
640,
640,
640,
1280,
1280,
1280,
1280
]
self.encode_output_chs2 = [
320,
320,
320,
320,
640,
640,
640,
1280,
1280
]
for in_ch, cont_ch in zip(self.encode_output_chs, self.encode_output_chs2):
dim_head = in_ch // self.num_heads
dim_head = dim_head // dim_head_denorm
warp_flow_blks.append(SpatialTransformer(
in_channels=in_ch,
n_heads=self.num_heads,
d_head=dim_head,
depth=self.transformer_depth,
context_dim=cont_ch,
use_linear=self.use_linear_in_transformer,
use_checkpoint=self.use_checkpoint,
))
warp_zero_convs.append(self.make_zero_conv(in_ch))
self.warp_flow_blks = nn.ModuleList(reversed(warp_flow_blks))
self.warp_zero_convs = nn.ModuleList(reversed(warp_zero_convs))
def make_zero_conv(self, channels):
return zero_module(conv_nd(2, channels, channels, 1, padding=0))
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
hs = []
with torch.no_grad():
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
if control is not None:
hint = control.pop()
for module in self.output_blocks[:3]:
control.pop()
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
n_warp = len(self.encode_output_chs)
for i, (module, warp_blk, warp_zc) in enumerate(zip(self.output_blocks[3:n_warp+3], self.warp_flow_blks, self.warp_zero_convs)):
if control is None or (h.shape[-2] == 8 and h.shape[-1] == 6):
assert 0, f"shape is wrong : {h.shape}"
else:
hint = control.pop()
h = self.warp(h, hint, warp_blk, warp_zc)
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
for module in self.output_blocks[n_warp+3:]:
if control is None:
h = torch.cat([h, hs.pop()], dim=1)
else:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
return self.out(h)
def warp(self, x, hint, crossattn_layer, zero_conv, mask1=None, mask2=None):
hint = rearrange(hint, "b c h w -> b (h w) c").contiguous()
output = crossattn_layer(x, hint)
output = zero_conv(output)
return output + x
class NoZeroConvControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None,
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
use_VAEdownsample=False,
cond_first_ch=8,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received um_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
self.use_VAEdownsample = use_VAEdownsample
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.cond_first_block = TimestepEmbedSequential(
zero_module(conv_nd(dims, cond_first_ch, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
def forward(self, x, hint, timesteps, context, only_mid_control=False, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if not self.use_VAEdownsample:
guided_hint = self.input_hint_block(hint, emb, context)
else:
guided_hint = self.cond_first_block(hint, emb, context)
outs = []
hs = []
h = x.type(self.dtype)
for module in self.input_blocks:
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
hs.append(h)
guided_hint = None
else:
h = module(h, emb, context)
hs.append(h)
outs.append(h)
h = self.middle_block(h, emb, context)
outs.append(h)
return outs, None