File size: 10,417 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import mmcv
import numpy as np

from mmdet.core import INSTANCE_OFFSET, bbox2result
from mmdet.core.visualization import imshow_det_bboxes
from ..builder import DETECTORS, build_backbone, build_head, build_neck
from .single_stage import SingleStageDetector


@DETECTORS.register_module()
class MaskFormer(SingleStageDetector):
    r"""Implementation of `Per-Pixel Classification is
    NOT All You Need for Semantic Segmentation
    <https://arxiv.org/pdf/2107.06278>`_."""

    def __init__(self,
                 backbone,
                 neck=None,
                 panoptic_head=None,
                 panoptic_fusion_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):
        super(SingleStageDetector, self).__init__(init_cfg=init_cfg)
        self.backbone = build_backbone(backbone)
        if neck is not None:
            self.neck = build_neck(neck)

        panoptic_head_ = copy.deepcopy(panoptic_head)
        panoptic_head_.update(train_cfg=train_cfg)
        panoptic_head_.update(test_cfg=test_cfg)
        self.panoptic_head = build_head(panoptic_head_)

        panoptic_fusion_head_ = copy.deepcopy(panoptic_fusion_head)
        panoptic_fusion_head_.update(test_cfg=test_cfg)
        self.panoptic_fusion_head = build_head(panoptic_fusion_head_)

        self.num_things_classes = self.panoptic_head.num_things_classes
        self.num_stuff_classes = self.panoptic_head.num_stuff_classes
        self.num_classes = self.panoptic_head.num_classes

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        # BaseDetector.show_result default for instance segmentation
        if self.num_stuff_classes > 0:
            self.show_result = self._show_pan_result

    def forward_dummy(self, img, img_metas):
        """Used for computing network flops. See
        `mmdetection/tools/analysis_tools/get_flops.py`

        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.
            img_metas (list[Dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
        """
        super(SingleStageDetector, self).forward_train(img, img_metas)
        x = self.extract_feat(img)
        outs = self.panoptic_head(x, img_metas)
        return outs

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_masks,
                      gt_semantic_seg=None,
                      gt_bboxes_ignore=None,
                      **kargs):
        """
        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.
            img_metas (list[Dict]): list of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box.
            gt_masks (list[BitmapMasks]): true segmentation masks for each box
                used if the architecture supports a segmentation task.
            gt_semantic_seg (list[tensor]): semantic segmentation mask for
                images for panoptic segmentation.
                Defaults to None for instance segmentation.
            gt_bboxes_ignore (list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.
                Defaults to None.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # add batch_input_shape in img_metas
        super(SingleStageDetector, self).forward_train(img, img_metas)
        x = self.extract_feat(img)
        losses = self.panoptic_head.forward_train(x, img_metas, gt_bboxes,
                                                  gt_labels, gt_masks,
                                                  gt_semantic_seg,
                                                  gt_bboxes_ignore)

        return losses

    def simple_test(self, imgs, img_metas, **kwargs):
        """Test without augmentation.

        Args:
            imgs (Tensor): A batch of images.
            img_metas (list[dict]): List of image information.

        Returns:
            list[dict[str, np.array | tuple[list]] | tuple[list]]:
                Semantic segmentation results and panoptic segmentation \
                results of each image for panoptic segmentation, or formatted \
                bbox and mask results of each image for instance segmentation.

            .. code-block:: none

                [
                    # panoptic segmentation
                    {
                        'pan_results': np.array, # shape = [h, w]
                        'ins_results': tuple[list],
                        # semantic segmentation results are not supported yet
                        'sem_results': np.array
                    },
                    ...
                ]

            or

            .. code-block:: none

                [
                    # instance segmentation
                    (
                        bboxes, # list[np.array]
                        masks # list[list[np.array]]
                    ),
                    ...
                ]
        """
        feats = self.extract_feat(imgs)
        mask_cls_results, mask_pred_results = self.panoptic_head.simple_test(
            feats, img_metas, **kwargs)
        results = self.panoptic_fusion_head.simple_test(
            mask_cls_results, mask_pred_results, img_metas, **kwargs)
        for i in range(len(results)):
            if 'pan_results' in results[i]:
                results[i]['pan_results'] = results[i]['pan_results'].detach(
                ).cpu().numpy()

            if 'ins_results' in results[i]:
                labels_per_image, bboxes, mask_pred_binary = results[i][
                    'ins_results']
                bbox_results = bbox2result(bboxes, labels_per_image,
                                           self.num_things_classes)
                mask_results = [[] for _ in range(self.num_things_classes)]
                for j, label in enumerate(labels_per_image):
                    mask = mask_pred_binary[j].detach().cpu().numpy()
                    mask_results[label].append(mask)
                results[i]['ins_results'] = bbox_results, mask_results

            assert 'sem_results' not in results[i], 'segmantic segmentation '\
                'results are not supported yet.'

        if self.num_stuff_classes == 0:
            results = [res['ins_results'] for res in results]

        return results

    def aug_test(self, imgs, img_metas, **kwargs):
        raise NotImplementedError

    def onnx_export(self, img, img_metas):
        raise NotImplementedError

    def _show_pan_result(self,
                         img,
                         result,
                         score_thr=0.3,
                         bbox_color=(72, 101, 241),
                         text_color=(72, 101, 241),
                         mask_color=None,
                         thickness=2,
                         font_size=13,
                         win_name='',
                         show=False,
                         wait_time=0,
                         out_file=None):
        """Draw `panoptic result` over `img`.

        Args:
            img (str or Tensor): The image to be displayed.
            result (dict): The results.

            score_thr (float, optional): Minimum score of bboxes to be shown.
                Default: 0.3.
            bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
               The tuple of color should be in BGR order. Default: 'green'.
            text_color (str or tuple(int) or :obj:`Color`):Color of texts.
               The tuple of color should be in BGR order. Default: 'green'.
            mask_color (None or str or tuple(int) or :obj:`Color`):
               Color of masks. The tuple of color should be in BGR order.
               Default: None.
            thickness (int): Thickness of lines. Default: 2.
            font_size (int): Font size of texts. Default: 13.
            win_name (str): The window name. Default: ''.
            wait_time (float): Value of waitKey param.
                Default: 0.
            show (bool): Whether to show the image.
                Default: False.
            out_file (str or None): The filename to write the image.
                Default: None.

        Returns:
            img (Tensor): Only if not `show` or `out_file`.
        """
        img = mmcv.imread(img)
        img = img.copy()
        pan_results = result['pan_results']
        # keep objects ahead
        ids = np.unique(pan_results)[::-1]
        legal_indices = ids != self.num_classes  # for VOID label
        ids = ids[legal_indices]
        labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
        segms = (pan_results[None] == ids[:, None, None])

        # if out_file specified, do not show image in window
        if out_file is not None:
            show = False
        # draw bounding boxes
        img = imshow_det_bboxes(
            img,
            segms=segms,
            labels=labels,
            class_names=self.CLASSES,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            thickness=thickness,
            font_size=font_size,
            win_name=win_name,
            show=show,
            wait_time=wait_time,
            out_file=out_file)

        if not (show or out_file):
            return img