Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmcv.runner import BaseModule | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from ..builder import BACKBONES | |
from ..utils import InvertedResidual, make_divisible | |
class MobileNetV2(BaseModule): | |
"""MobileNetV2 backbone. | |
Args: | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Default: 1.0. | |
out_indices (Sequence[int], optional): Output from which stages. | |
Default: (1, 2, 4, 7). | |
frozen_stages (int): Stages to be frozen (all param fixed). | |
Default: -1, which means not freezing any parameters. | |
conv_cfg (dict, optional): Config dict for convolution layer. | |
Default: None, which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: dict(type='BN'). | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU6'). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Default: False. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Default: False. | |
pretrained (str, optional): model pretrained path. Default: None | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Default: None | |
""" | |
# Parameters to build layers. 4 parameters are needed to construct a | |
# layer, from left to right: expand_ratio, channel, num_blocks, stride. | |
arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], | |
[6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], | |
[6, 320, 1, 1]] | |
def __init__(self, | |
widen_factor=1., | |
out_indices=(1, 2, 4, 7), | |
frozen_stages=-1, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU6'), | |
norm_eval=False, | |
with_cp=False, | |
pretrained=None, | |
init_cfg=None): | |
super(MobileNetV2, self).__init__(init_cfg) | |
self.pretrained = pretrained | |
assert not (init_cfg and pretrained), \ | |
'init_cfg and pretrained cannot be specified at the same time' | |
if isinstance(pretrained, str): | |
warnings.warn('DeprecationWarning: pretrained is deprecated, ' | |
'please use "init_cfg" instead') | |
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) | |
elif pretrained is None: | |
if init_cfg is None: | |
self.init_cfg = [ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict( | |
type='Constant', | |
val=1, | |
layer=['_BatchNorm', 'GroupNorm']) | |
] | |
else: | |
raise TypeError('pretrained must be a str or None') | |
self.widen_factor = widen_factor | |
self.out_indices = out_indices | |
if not set(out_indices).issubset(set(range(0, 8))): | |
raise ValueError('out_indices must be a subset of range' | |
f'(0, 8). But received {out_indices}') | |
if frozen_stages not in range(-1, 8): | |
raise ValueError('frozen_stages must be in range(-1, 8). ' | |
f'But received {frozen_stages}') | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.norm_eval = norm_eval | |
self.with_cp = with_cp | |
self.in_channels = make_divisible(32 * widen_factor, 8) | |
self.conv1 = ConvModule( | |
in_channels=3, | |
out_channels=self.in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.layers = [] | |
for i, layer_cfg in enumerate(self.arch_settings): | |
expand_ratio, channel, num_blocks, stride = layer_cfg | |
out_channels = make_divisible(channel * widen_factor, 8) | |
inverted_res_layer = self.make_layer( | |
out_channels=out_channels, | |
num_blocks=num_blocks, | |
stride=stride, | |
expand_ratio=expand_ratio) | |
layer_name = f'layer{i + 1}' | |
self.add_module(layer_name, inverted_res_layer) | |
self.layers.append(layer_name) | |
if widen_factor > 1.0: | |
self.out_channel = int(1280 * widen_factor) | |
else: | |
self.out_channel = 1280 | |
layer = ConvModule( | |
in_channels=self.in_channels, | |
out_channels=self.out_channel, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
self.add_module('conv2', layer) | |
self.layers.append('conv2') | |
def make_layer(self, out_channels, num_blocks, stride, expand_ratio): | |
"""Stack InvertedResidual blocks to build a layer for MobileNetV2. | |
Args: | |
out_channels (int): out_channels of block. | |
num_blocks (int): number of blocks. | |
stride (int): stride of the first block. Default: 1 | |
expand_ratio (int): Expand the number of channels of the | |
hidden layer in InvertedResidual by this ratio. Default: 6. | |
""" | |
layers = [] | |
for i in range(num_blocks): | |
if i >= 1: | |
stride = 1 | |
layers.append( | |
InvertedResidual( | |
self.in_channels, | |
out_channels, | |
mid_channels=int(round(self.in_channels * expand_ratio)), | |
stride=stride, | |
with_expand_conv=expand_ratio != 1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
with_cp=self.with_cp)) | |
self.in_channels = out_channels | |
return nn.Sequential(*layers) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
for param in self.conv1.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
layer = getattr(self, f'layer{i}') | |
layer.eval() | |
for param in layer.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
"""Forward function.""" | |
x = self.conv1(x) | |
outs = [] | |
for i, layer_name in enumerate(self.layers): | |
layer = getattr(self, layer_name) | |
x = layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
return tuple(outs) | |
def train(self, mode=True): | |
"""Convert the model into training mode while keep normalization layer | |
frozen.""" | |
super(MobileNetV2, self).train(mode) | |
self._freeze_stages() | |
if mode and self.norm_eval: | |
for m in self.modules(): | |
# trick: eval have effect on BatchNorm only | |
if isinstance(m, _BatchNorm): | |
m.eval() | |