Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler | |
from ..builder import HEADS, build_head, build_roi_extractor | |
from .base_roi_head import BaseRoIHead | |
from .test_mixins import BBoxTestMixin, MaskTestMixin | |
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): | |
"""Simplest base roi head including one bbox head and one mask head.""" | |
def init_assigner_sampler(self): | |
"""Initialize assigner and sampler.""" | |
self.bbox_assigner = None | |
self.bbox_sampler = None | |
if self.train_cfg: | |
self.bbox_assigner = build_assigner(self.train_cfg.assigner) | |
self.bbox_sampler = build_sampler( | |
self.train_cfg.sampler, context=self) | |
def init_bbox_head(self, bbox_roi_extractor, bbox_head): | |
"""Initialize ``bbox_head``""" | |
self.bbox_roi_extractor = build_roi_extractor(bbox_roi_extractor) | |
self.bbox_head = build_head(bbox_head) | |
def init_mask_head(self, mask_roi_extractor, mask_head): | |
"""Initialize ``mask_head``""" | |
if mask_roi_extractor is not None: | |
self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor) | |
self.share_roi_extractor = False | |
else: | |
self.share_roi_extractor = True | |
self.mask_roi_extractor = self.bbox_roi_extractor | |
self.mask_head = build_head(mask_head) | |
def forward_dummy(self, x, proposals): | |
"""Dummy forward function.""" | |
# bbox head | |
outs = () | |
rois = bbox2roi([proposals]) | |
if self.with_bbox: | |
bbox_results = self._bbox_forward(x, rois) | |
outs = outs + (bbox_results['cls_score'], | |
bbox_results['bbox_pred']) | |
# mask head | |
if self.with_mask: | |
mask_rois = rois[:100] | |
mask_results = self._mask_forward(x, mask_rois) | |
outs = outs + (mask_results['mask_pred'], ) | |
return outs | |
def forward_train(self, | |
x, | |
img_metas, | |
proposal_list, | |
gt_bboxes, | |
gt_labels, | |
gt_bboxes_ignore=None, | |
gt_masks=None, | |
**kwargs): | |
""" | |
Args: | |
x (list[Tensor]): list of multi-level img features. | |
img_metas (list[dict]): list of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`mmdet/datasets/pipelines/formatting.py:Collect`. | |
proposals (list[Tensors]): list of region proposals. | |
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with | |
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
gt_masks (None | Tensor) : true segmentation masks for each box | |
used if the architecture supports a segmentation task. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
# assign gts and sample proposals | |
if self.with_bbox or self.with_mask: | |
num_imgs = len(img_metas) | |
if gt_bboxes_ignore is None: | |
gt_bboxes_ignore = [None for _ in range(num_imgs)] | |
sampling_results = [] | |
for i in range(num_imgs): | |
assign_result = self.bbox_assigner.assign( | |
proposal_list[i], gt_bboxes[i], gt_bboxes_ignore[i], | |
gt_labels[i]) | |
sampling_result = self.bbox_sampler.sample( | |
assign_result, | |
proposal_list[i], | |
gt_bboxes[i], | |
gt_labels[i], | |
feats=[lvl_feat[i][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
losses = dict() | |
# bbox head forward and loss | |
if self.with_bbox: | |
bbox_results = self._bbox_forward_train(x, sampling_results, | |
gt_bboxes, gt_labels, | |
img_metas) | |
losses.update(bbox_results['loss_bbox']) | |
# mask head forward and loss | |
if self.with_mask: | |
mask_results = self._mask_forward_train(x, sampling_results, | |
bbox_results['bbox_feats'], | |
gt_masks, img_metas) | |
losses.update(mask_results['loss_mask']) | |
return losses | |
def _bbox_forward(self, x, rois): | |
"""Box head forward function used in both training and testing.""" | |
# TODO: a more flexible way to decide which feature maps to use | |
bbox_feats = self.bbox_roi_extractor( | |
x[:self.bbox_roi_extractor.num_inputs], rois) | |
if self.with_shared_head: | |
bbox_feats = self.shared_head(bbox_feats) | |
cls_score, bbox_pred = self.bbox_head(bbox_feats) | |
bbox_results = dict( | |
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats) | |
return bbox_results | |
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, | |
img_metas): | |
"""Run forward function and calculate loss for box head in training.""" | |
rois = bbox2roi([res.bboxes for res in sampling_results]) | |
bbox_results = self._bbox_forward(x, rois) | |
bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes, | |
gt_labels, self.train_cfg) | |
loss_bbox = self.bbox_head.loss(bbox_results['cls_score'], | |
bbox_results['bbox_pred'], rois, | |
*bbox_targets) | |
bbox_results.update(loss_bbox=loss_bbox) | |
return bbox_results | |
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, | |
img_metas): | |
"""Run forward function and calculate loss for mask head in | |
training.""" | |
if not self.share_roi_extractor: | |
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) | |
mask_results = self._mask_forward(x, pos_rois) | |
else: | |
pos_inds = [] | |
device = bbox_feats.device | |
for res in sampling_results: | |
pos_inds.append( | |
torch.ones( | |
res.pos_bboxes.shape[0], | |
device=device, | |
dtype=torch.uint8)) | |
pos_inds.append( | |
torch.zeros( | |
res.neg_bboxes.shape[0], | |
device=device, | |
dtype=torch.uint8)) | |
pos_inds = torch.cat(pos_inds) | |
mask_results = self._mask_forward( | |
x, pos_inds=pos_inds, bbox_feats=bbox_feats) | |
mask_targets = self.mask_head.get_targets(sampling_results, gt_masks, | |
self.train_cfg) | |
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) | |
loss_mask = self.mask_head.loss(mask_results['mask_pred'], | |
mask_targets, pos_labels) | |
mask_results.update(loss_mask=loss_mask, mask_targets=mask_targets) | |
return mask_results | |
def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None): | |
"""Mask head forward function used in both training and testing.""" | |
assert ((rois is not None) ^ | |
(pos_inds is not None and bbox_feats is not None)) | |
if rois is not None: | |
mask_feats = self.mask_roi_extractor( | |
x[:self.mask_roi_extractor.num_inputs], rois) | |
if self.with_shared_head: | |
mask_feats = self.shared_head(mask_feats) | |
else: | |
assert bbox_feats is not None | |
mask_feats = bbox_feats[pos_inds] | |
mask_pred = self.mask_head(mask_feats) | |
mask_results = dict(mask_pred=mask_pred, mask_feats=mask_feats) | |
return mask_results | |
async def async_simple_test(self, | |
x, | |
proposal_list, | |
img_metas, | |
proposals=None, | |
rescale=False): | |
"""Async test without augmentation.""" | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
det_bboxes, det_labels = await self.async_test_bboxes( | |
x, img_metas, proposal_list, self.test_cfg, rescale=rescale) | |
bbox_results = bbox2result(det_bboxes, det_labels, | |
self.bbox_head.num_classes) | |
if not self.with_mask: | |
return bbox_results | |
else: | |
segm_results = await self.async_test_mask( | |
x, | |
img_metas, | |
det_bboxes, | |
det_labels, | |
rescale=rescale, | |
mask_test_cfg=self.test_cfg.get('mask')) | |
return bbox_results, segm_results | |
def simple_test(self, | |
x, | |
proposal_list, | |
img_metas, | |
proposals=None, | |
rescale=False): | |
"""Test without augmentation. | |
Args: | |
x (tuple[Tensor]): Features from upstream network. Each | |
has shape (batch_size, c, h, w). | |
proposal_list (list(Tensor)): Proposals from rpn head. | |
Each has shape (num_proposals, 5), last dimension | |
5 represent (x1, y1, x2, y2, score). | |
img_metas (list[dict]): Meta information of images. | |
rescale (bool): Whether to rescale the results to | |
the original image. Default: True. | |
Returns: | |
list[list[np.ndarray]] or list[tuple]: When no mask branch, | |
it is bbox results of each image and classes with type | |
`list[list[np.ndarray]]`. The outer list | |
corresponds to each image. The inner list | |
corresponds to each class. When the model has mask branch, | |
it contains bbox results and mask results. | |
The outer list corresponds to each image, and first element | |
of tuple is bbox results, second element is mask results. | |
""" | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
det_bboxes, det_labels = self.simple_test_bboxes( | |
x, img_metas, proposal_list, self.test_cfg, rescale=rescale) | |
bbox_results = [ | |
bbox2result(det_bboxes[i], det_labels[i], | |
self.bbox_head.num_classes) | |
for i in range(len(det_bboxes)) | |
] | |
if not self.with_mask: | |
return bbox_results | |
else: | |
segm_results = self.simple_test_mask( | |
x, img_metas, det_bboxes, det_labels, rescale=rescale) | |
return list(zip(bbox_results, segm_results)) | |
def aug_test(self, x, proposal_list, img_metas, rescale=False): | |
"""Test with augmentations. | |
If rescale is False, then returned bboxes and masks will fit the scale | |
of imgs[0]. | |
""" | |
det_bboxes, det_labels = self.aug_test_bboxes(x, img_metas, | |
proposal_list, | |
self.test_cfg) | |
if rescale: | |
_det_bboxes = det_bboxes | |
else: | |
_det_bboxes = det_bboxes.clone() | |
_det_bboxes[:, :4] *= det_bboxes.new_tensor( | |
img_metas[0][0]['scale_factor']) | |
bbox_results = bbox2result(_det_bboxes, det_labels, | |
self.bbox_head.num_classes) | |
# det_bboxes always keep the original scale | |
if self.with_mask: | |
segm_results = self.aug_test_mask(x, img_metas, det_bboxes, | |
det_labels) | |
return [(bbox_results, segm_results)] | |
else: | |
return [bbox_results] | |
def onnx_export(self, x, proposals, img_metas, rescale=False): | |
"""Test without augmentation.""" | |
assert self.with_bbox, 'Bbox head must be implemented.' | |
det_bboxes, det_labels = self.bbox_onnx_export( | |
x, img_metas, proposals, self.test_cfg, rescale=rescale) | |
if not self.with_mask: | |
return det_bboxes, det_labels | |
else: | |
segm_results = self.mask_onnx_export( | |
x, img_metas, det_bboxes, det_labels, rescale=rescale) | |
return det_bboxes, det_labels, segm_results | |
def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs): | |
"""Export mask branch to onnx which supports batch inference. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
img_metas (list[dict]): Image meta info. | |
det_bboxes (Tensor): Bboxes and corresponding scores. | |
has shape [N, num_bboxes, 5]. | |
det_labels (Tensor): class labels of | |
shape [N, num_bboxes]. | |
Returns: | |
Tensor: The segmentation results of shape [N, num_bboxes, | |
image_height, image_width]. | |
""" | |
# image shapes of images in the batch | |
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): | |
raise RuntimeError('[ONNX Error] Can not record MaskHead ' | |
'as it has not been executed this time') | |
batch_size = det_bboxes.size(0) | |
# if det_bboxes is rescaled to the original image size, we need to | |
# rescale it back to the testing scale to obtain RoIs. | |
det_bboxes = det_bboxes[..., :4] | |
batch_index = torch.arange( | |
det_bboxes.size(0), device=det_bboxes.device).float().view( | |
-1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) | |
mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) | |
mask_rois = mask_rois.view(-1, 5) | |
mask_results = self._mask_forward(x, mask_rois) | |
mask_pred = mask_results['mask_pred'] | |
max_shape = img_metas[0]['img_shape_for_onnx'] | |
num_det = det_bboxes.shape[1] | |
det_bboxes = det_bboxes.reshape(-1, 4) | |
det_labels = det_labels.reshape(-1) | |
segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes, | |
det_labels, self.test_cfg, | |
max_shape) | |
segm_results = segm_results.reshape(batch_size, num_det, max_shape[0], | |
max_shape[1]) | |
return segm_results | |
def bbox_onnx_export(self, x, img_metas, proposals, rcnn_test_cfg, | |
**kwargs): | |
"""Export bbox branch to onnx which supports batch inference. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
img_metas (list[dict]): Image meta info. | |
proposals (Tensor): Region proposals with | |
batch dimension, has shape [N, num_bboxes, 5]. | |
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. | |
Returns: | |
tuple[Tensor, Tensor]: bboxes of shape [N, num_bboxes, 5] | |
and class labels of shape [N, num_bboxes]. | |
""" | |
# get origin input shape to support onnx dynamic input shape | |
assert len( | |
img_metas | |
) == 1, 'Only support one input image while in exporting to ONNX' | |
img_shapes = img_metas[0]['img_shape_for_onnx'] | |
rois = proposals | |
batch_index = torch.arange( | |
rois.size(0), device=rois.device).float().view(-1, 1, 1).expand( | |
rois.size(0), rois.size(1), 1) | |
rois = torch.cat([batch_index, rois[..., :4]], dim=-1) | |
batch_size = rois.shape[0] | |
num_proposals_per_img = rois.shape[1] | |
# Eliminate the batch dimension | |
rois = rois.view(-1, 5) | |
bbox_results = self._bbox_forward(x, rois) | |
cls_score = bbox_results['cls_score'] | |
bbox_pred = bbox_results['bbox_pred'] | |
# Recover the batch dimension | |
rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) | |
cls_score = cls_score.reshape(batch_size, num_proposals_per_img, | |
cls_score.size(-1)) | |
bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, | |
bbox_pred.size(-1)) | |
det_bboxes, det_labels = self.bbox_head.onnx_export( | |
rois, cls_score, bbox_pred, img_shapes, cfg=rcnn_test_cfg) | |
return det_bboxes, det_labels | |